
2.3.2 Higher-Order Nonlinear Effects

 Although the propagation equation (2.3.28) has been successful
in explaining a large number of nonlinear effects, it may need to
be modified depending on the experimental conditions.
• For example, Eq.(2.3.28) does not include the effects of

stimulated inelastic scattering such as SRS and SBS

 If peak power of the incident pulse is above a threshold level,
SRS and SBS can transfer energy to a new pulse at a different
wavelength,
• which may propagate in the same or the opposite direction.
• The two pulses also interact with each other through the

phenomenon of cross-phase modulation (XPM).



 A similar situation occurs when two or more pulses at different
wavelengths (separated by more than individual spectral
widths) are incident on the fiber.

 Simultaneous propagation of multiple pulses is governed by a
set of equations similar to Eq. (2.3.28), modified suitably to
include the contributions of XPM and the Raman or Brillouin
gain.



 Equation (2.3.28) should also be modified for ultrashort optical
pulses whose widths are close to or <1 ps
• The spectral width of such pulses becomes large enough that

several approximations made in the derivation of Eq. (2.3.28)
become questionable.

• The most important limitation turns out to be the neglect of the
Raman effect.

– Intrapulse Raman scattering: For pulses with a wide spectrum
(>0.1 THz), the Raman gain can amplify the low-frequency
components of a pulse by transferring energy from the high-
frequency components of the same pulse.

– Raman-induced frequency shift: the pulse spectrum shifts toward
the low-frequency (red) side as the pulse propagates inside the
fiber.



 The physical origin of this effect is related to the delayed nature
of the Raman (vibrational) response.

 The starting point is again the wave equation (2.3.1).

 Equation (2.1.10) describes a wide variety of third-order
nonlinear effects, and not all of them are relevant to our
discussion.
• For example, nonlinear phenomena such as third-harmonic

generation and four-wave mixing are unlikely to occur
unless an appropriate phase-matching condition is satisfied



 The intensity-dependent nonlinear effects can be included by
assuming the following form for the third-order susceptibility
[16]:

R(t): the nonlinear response function ( ∫−∞
∞ R(t)dt = 1)

 If we substitute Eq. (2.3.31) in Eq. (2.1.10) and introduce a
slowly varying optical field through Eq. (2.3.2), the scalar form
of the nonlinear polarization is given by

– the upper limit of integration extends only up to t
– the response function: R(t −t1)=0 for t1 > t (causality)



 In the frequency domain, �𝐸𝐸 is found to satisfy (using Eqs. (2.3.2)–
(2.3.4))

�𝑅𝑅(ω): the Fourier transform of R(t).
 First, we can treat the terms on the right-hand side as a small

perturbation and first obtain the modal distribution by neglecting them.
 The effect of perturbation terms is to change the propagation constant

for the fundamental mode by Δβ as in Eq. (2.3.19) but with a different
expression for Δβ.



 The slowly varying amplitude A(z, t) can still be defined as in
Eq. (2.3.21).

 When converting back from frequency to time domain, we
should take into account the frequency dependence of Δβ by
expanding it in a Taylor series as indicated in Eq. (2.3.25).

 This amounts to expanding the parameters γ and α as

γm =(dmγ/dωm)ω=ω0

 In most cases of practical interest it is sufficient to retain the first 
two terms in this expansion



 We then obtain the following equation for pulse evolution inside
a single-mode fiber:

– The integral in this equation accounts for the energy transfer
resulting from intrapulse Raman scattering.

 Equation (2.3.36) can be used for pulses as short as a few optical
cycles if enough higher-order dispersive terms are included .
• For example, dispersive effects up to 12th order are sometimes

included when dealing with supercontinuum generation in optical
fibers
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 It is important to note that the use of γ1 in Eq. (2.3.36) includes
automatically the frequency dependence of both n2 and Aeff.

 Ｔhe ratio γ1/γ consists of the following three terms

(γ1 = (dγ/dω)ω=ω0, γ = 𝑛𝑛2(𝜔𝜔0)𝜔𝜔0
𝑐𝑐𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒

):

• The first term provides the dominant contribution,
• The second and third terms become important in the case of a

supercontinuum that may extend over 100 THz or more
• If spectral broadening is limited to 20 THz or so, one can employ
γ1 ≈γ/ω0

 If we combine the terms containing the derivative ∂A/∂t, we find
that the γ1 term forces the group velocity to depend on the optical
intensity and leads to the phenomenon of self-steepening



 The nonlinear response function R(t) should include both
the electronic and nuclear contributions.

 Assuming that the electronic contribution is nearly
instantaneous, the functional form of R(t) can be written as

• te : a negligibly short delay in electronic response (te < 1 fs).
• fR: fractional contribution of the delayed Raman response

to nonlinear polarization PNL.
• hR(t)︰Raman response function (it is set by vibrations of

silica molecules induced by the optical field)



 It is not easy to calculate hR(t) because of the amorphous nature 
of silica fibers.

 An indirect experimental approach is used in practice by noting 
that the Raman gain spectrum is related to the imaginary part of 
the Fourier transform of hR(t) as 

Δω = ω −ω0

Im: stands for the imaginary part
 The real part of  �ℎR(Δω) can be obtained from the imaginary part 

through the Kramers–Kronig relation.
 The inverse Fourier transform of �ℎ R(Δω) then provides the 

Raman response function hR(t).



Temporal variation of the Raman response 
function hR(t)

 Temporal form of hR(t) deduced from the experimentally
measured spectrum of the Raman gain in silica fibers [15].

 In view of the damped oscillations, a useful form is

– τ1 = 12.2 fs, τ2 = 32 fs



 The fraction fR can also be estimated from Eq. (2.3.39).

 Using the known numerical value of peak Raman gain, fR is
found to be about 0.18

 One should be careful in using Eq. (2.3.40) for hR(t) because it
approximates the actual Raman gain spectrum with a single
Lorentzian profile, and thus fails to reproduce the hump at
frequencies below 5 THz.

 This feature contributes to the Raman-induced frequency shift.
As a result, Eq. (2.3.40) generally underestimates this shift.



 Equation (2.3.36) together with the response function R(t) given
by Eq. (2.3.38) governs evolution of ultrashort pulses in optical
fibers.

 Its accuracy has been verified by showing that it preserves the
number of photons during pulse evolution if fiber loss is
ignored by setting α = 0 [17].

 The pulse energy is not conserved in the presence of intrapulse
Raman scattering because a part of the pulse energy is taken by
silica molecules.

 Equation (2.3.36) includes this source of nonlinear loss.



 It is easy to see that it reduces to the simpler equation (2.3.28)
for optical pulses much longer than the time scale of the Raman
response function hR(t).
– hR(t) 0 for τ > 1 ps,
– for such pulses, R(t) can be replaced by δ(t).

 As the higher-order dispersion term involving β3, the loss term
involving α1, and the nonlinear term involving γ1 are also
negligible for such pulses, Eq. (2.3.36) reduces to Eq. (2.3.28).



 For pulses wide enough to contain many optical cycles (pulse
width >100 fs), we can simplify Eq. (2.3.36) considerably by
setting α1 = 0 and γ1 = γ/ω0 and using the following Taylor-series
expansion:

 This approximation is reasonable if the pulse envelope evolves
slowly along the fiber.



 Defining the nonlinear response function as

– ∫0
∞𝑅𝑅(𝑡𝑡)𝑑𝑑𝑡𝑡 = 1 ,

– Eq. (2.3.36) can be approximated by

– where a frame of reference moving with the pulse at the group
velocity vg (the so-called retarded frame) is used

 A second-order term involving the ratio TR /ω0 was neglected in
arriving at Eq. (2.3.43) because of its smallness.

(2.3.42)

(2.3.43)



 It is easy to identify the origin of the three higher-order terms

– The term proportional to β3 results from including the cubic
term in the expansion of the propagation constant.

– This term governs the effects of third-order dispersion and
becomes important for ultrashort pulses because of their
wide bandwidth.

(2.3.43)



– The term proportional to ω0
−1 results from the frequency

dependence of Δβ in Eq. (2.3.20). It is responsible for self-
steepening .

– The last term proportional to TR has its origin in the delayed
Raman response, and it is responsible for the Raman-induced
frequency shift induced by intrapulse Raman scattering.

(2.3.43)

(2.3.42)



 By using Eqs. (2.3.39) and (2.3.42), TR can be related to the slope
of the Raman gain spectrum [12] that is assumed to vary
linearly with frequency in the vicinity of the carrier frequency
ω0.

 Its numerical value has also been deduced experimentally,
resulting in TR=3 fs at wavelengths near 1.5 μm.

 For pulses shorter than 0.5 ps, the Raman gain may not vary
linearly over the entire pulse bandwidth, and the use of Eq.
(2.3.43) becomes questionable for such short pulses.

(2.3.43)



 For pulses of width T0 > 5 ps, the parameters (ω0T0 )−1 and TR / T0
become so small ( < 0.001) that the last two terms in Eq. (2.3.43) can be
neglected.

 As the contribution of the third-order dispersion term is also quite
small for such pulses (as long as the carrier wavelength is not too close
to the zero-dispersion wavelength), one can employ the simplified
equation

 This equation can also be obtained from Eq. (2.3.28) by using the
transformation given in Eq. (2.3.44).

(2.3.45)

(2.3.43)



 Eq. (2.3.45) is referred to as the NLS equation (if α = 0) because
it resembles the Schr ̈odinger with a nonlinear potential term
(variable z playing the role of time).

 Eq. (2.3.43) is called the generalized (or extended) NLS
equation.

 The NLS equation is a fundamental equation of nonlinear
science and has been studied extensively in the context of solitons

 Equation (2.3.45) is the simplest nonlinear equation for studying third-
order non-linear effects in optical fibers

(2.3.43)



 If the peak power associated with an optical pulse becomes so
large that one needs to include the fifth and higher-order terms
in Eq. (1.3.1), the NLS equation needs to be modified.



 A simple approach replaces the nonlinear parameter with γ
governing the power level at which the nonlinearity begins to
saturate
– γ = γ0(1−bs | A |2) ,
– bs: a saturation parameter

 For silica fibers, bs| A |2 ≪ 1 in most practical situations, and one
can use Eq. (2.3.45).



 This term (γ = γ0(1−bs | A |2) ) may become relevant when the
peak intensity approaches 1 GW/cm2 .
– The resulting equation is called the cubic-quintic NLS equation
– it contains terms involving both the third and fifth powers of the

amplitude A.
 Eq. (2.3.45) is referred to as the cubic NLS equation.

 Fibers made by using materials with larger values of n2 (such as
silicate and chalcogenide fibers(硫化物)) are likely to exhibit the
saturation effects at a lower peak-power level.

 The cubic-quintic NLS equation may become relevant for them
and for fibers whose core is doped with high-nonlinearity
materials such as organic dyes [42] and semiconductors [43].

(2.3.45)



 Equation (2.3.45) appears in optics in several different contexts
[39].

– For example, the same equation holds for propagation of CW beams
in planar waveguides when the variable T is interpreted as a spatial
coordinate.

– The β2 term in Eq. (2.3.45) then governs beam diffraction in the
plane of the waveguide.

 This analogy between “diffraction in space” and “dispersion in
time” is often exploited to advantage since the same equation
governs the underlying physics.

(2.3.45)



2.4 Numerical Methods
 The NLS equation is a nonlinear partial differential equation that 

does not generally lend itself to analytic solutions except for some 
specific cases in which the inverse scattering method (逆散射) can 
be employed

 A numerical approach is therefore often necessary for an 
understanding of the nonlinear effects in optical fibers. 

 Numerical methods can be classified into two broad categories 
1. Finite-difference method (有限差分法): 
2. Pseudo-spectral method (偽譜法): are faster by up to an 

order of magnitude to achieve the same accuracy
 Split-step Fourier method (分步傅立葉法):

– The one method that has been used extensively to solve the pulse-
propagation  problem in nonlinear dispersive media .

– The relative Speed compare with Finite-difference method can 
be attributed in part to the use of the finite-Fourier-transform 
(FFT) algorithm .



Split-Step Fourier Method

 To understand the philosophy behind the split-step Fourier 
method, it is useful to write Eq. (2.3.43) formally in the form

�D (differential operator): accounts for dispersion and losses within a linear 
medium
�𝑁𝑁(nonlinear operator): the effect of fiber nonlinearities on pulse propagation.



 Dispersion and nonlinearity act together along the length of the 
fiber.

 The split-step Fourier method obtains an approximate solution 
by assuming that in propagating the optical field over a small 
distance h, 

– dispersive and nonlinear effects can be assumed to act 
independently.

– propagation from z to z+h is carried out in two steps.
• First step, the nonlinearity acts alone, and �𝑫𝑫=0 
• Second step, dispersion acts alone, and �𝑵𝑵=0

– Mathematically



 The exponential operator exp(h�𝐷𝐷) can be evaluated in the 
Fourier domain using the prescription

FT: the Fourier-transform operation
�𝑫𝑫(- iω) : from Eq. (2.4.2) by replacing the operator 𝜕𝜕

𝜕𝜕𝑇𝑇
by -iω,

ω: frequency in the Fourier domain.

 As �𝑫𝑫 (iω) is just a number in the Fourier space, the 
evaluation of Eq. (2.4.5) is straightforward.

 The use of the FFT algorithm makes numerical evaluation 
of Eq. (2.4.5) relatively fast. 

 It is for this reason that the split-step Fourier method can 
be faster by up to two orders of magnitude compared with 
most finite-difference schemes.



 To estimate the accuracy of the split-step Fourier method, 
that a formally exact solution of Eq. (2.4.1) is given by ( �𝑁𝑁 is 
assumed to be z independent)

 The Baker– Hausdorff (貝克豪斯多夫) formula for two 
noncommuting operators �𝑎𝑎 and �𝑏𝑏 ([ �𝑎𝑎 , �𝑏𝑏 ] = �𝑎𝑎 �𝑏𝑏 −�𝑏𝑏 �𝑎𝑎)

 A comparison of Eqs. (2.4.4) and (2.4.6) shows that the split-
step Fourier method ignores the noncommutating nature of 
the operators �𝐷𝐷 and �𝑁𝑁 .



 By using Eq. (2.4.7) with �𝑎𝑎 = h �𝐷𝐷 and �𝑏𝑏 = h �𝑁𝑁, the dominant 
error term is found to result from the commutator 1

2
h2[�𝐷𝐷 , �𝑁𝑁 ]. 

 The split-step Fourier method is accurate to second order in the 
step size h



 The accuracy of the split-step Fourier method can be improved 
by adopting a different procedure to propagate the optical pulse 
over one segment from z to z+h. 

 In this procedure Eq. (2.4.4) is replaced by

 The main difference is that the effect of nonlinearity is included 
in the middle of the segment rather than at the segment boundary. 



 Symmetrized split step Fourier method:
– the symmetric form of the exponential operators in Eq. (2.4.8)

 The integral in the middle exponential is useful to include the z 
dependence of the nonlinear operator �𝑁𝑁.

 If step size (h) is small enough, the middle exponential can be 
approximated by exp (h�𝑵𝑵)

 The most important advantage of using the symmetrized form of 
Eq. (2.4.8):
leading error term results from the double commutator in Eq. 
(2.4.7) (third order in the step size h)



 This can be verified by applying Eq. (2.4.7) twice in Eq. (2.4.8)

 The accuracy of the split-step Fourier method can be further 
improved by evaluating the integral in Eq. (2.4.8) more 
accurately than approximating it by h �𝑁𝑁 (z).



 A simple approach is to employ the trapezoidal rule (梯形法則)
and approximate the integral by

– �𝑁𝑁 (z+h) is unknown at the mid-segment located at z+h/2. 
– It is necessary to follow an iterative procedure

• it is initiated by replacing �𝑁𝑁(z+h) by �𝑁𝑁(z). 
• Equation (2.4.8) is then used to estimate A(z+h,T) 
• it is used to calculate the new value of �𝑁𝑁(z+h).

 It can still reduce the overall computing time if the step size h can 
be increased because of the improved accuracy of the numerical 
algorithm. 



 The implementation of the split-step Fourier method is relatively 
straightforward.

 The fiber length is divided into a large number of segments that need 
not be spaced equally. 

 The optical pulse is propagated from segment to segment using the 
prescription of Eq. (2.4.8). 

 The optical field A(z,T) is first propagated for a distance  h/2 with 
dispersion only using the FFT algorithm and Eq. (2.4.5). 



 At the midplane z+h/2, the field is multiplied by a nonlinear 
term that represents the effect of nonlinearity over  the whole 
segment length h.

 Finally, the field is propagated for the remaining distance  h/2 
with dispersion only to obtain A(z+h,T).

 In effect, the nonlinearity is assumed to be lumped at the mid-
plane of each segment(dashed lines in Figure 2.3).



 The split-step Fourier method can be made to run faster by noting 
that the application of Eq. (2.4.8) over M successive steps results in 
the following expression:

L = Mh: total fiber length
The integral in Eq. (2.4.9) was approximated  with h �𝑁𝑁 . 

 Thus, except for the first and last dispersive steps, all intermediate 
steps can be carried over the whole segment length h. 

 This feature reduces the required number of  FFTs roughly by a 
factor of 2 and speeds up the numerical code by the same factor.



 A different algorithm is obtained if we use Eq. (2.4.7) with �𝑎𝑎 = 
h�N and  �𝑏𝑏=�ℎD. In that case, Eq. (2.4.10) is replaced with

 Both of these algorithms provide the same accuracy and are easy 
to implement in practice (see Appendix B). 

Higher-order versions of the split-step Fourier method can be 
used to improve the computational efficiency. 

 The use of an adaptive step size along z can also help in reducing 
the computational time for certain problems .



 The split-step Fourier method has been applied to a wide variety of 
optical problems :
1. wave propagation in atmosphere 
2. graded-index fibers (漸變折射率光纖) 
3. semiconductor lasers 
4. unstable resonators 
5. waveguide couplers

 Beam-propagation method (光束傳輸法): 
– when applied to the propagation of  CW optical beams in nonlinear 

media when dispersion is replaced by diffraction.



Non-linear Schrodinger Equation

 https://www.youtube.com/watch?v=5vw0Csy_1rs&t=143s

https://www.youtube.com/watch?v=5vw0Csy_1rs&t=143s
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