
2.3 Pulse-Propagation Equation

 The study of most nonlinear effects in optical fibers involves 
the use of short pulses with widths ranging from ∼10 ns to
10 fs.

 Both dispersive and nonlinear effects influence their shapes
and spectra.

 By using 2.1 Maxwell’s Equations, it can be written in the 
form





 The electric field can be written in the form by slowly 
varying envelope approximation (separate the rapidly 
varying part)

– E(r, t) : slowly varying function of time (relative to the 
optical period).

 The polarization components PL and PNL can also be 
expressed in a similar way by writing



 The linear component PL can be obtained by substituting Eq. 
(2.3.3) in (2.1.9)

�𝐸𝐸 (r, ω): Fourier transform of E(r, t)

In considering Eq. (2.1.9) and Eq. (2.3.2) 



 The nonlinear component PNL(r, t) is obtained by substituting 
Eq. (2.3.4) in Eq. (2.1.10)

 The time dependence of χ(3) in Eq. (2.1.10) is given by the 
product of three delta functions of the form δ(t −t1) ( if the 
nonlinear response is assumed to be instantaneous)

 The assumption of instantaneous nonlinear response amounts 
to neglecting the contribution of molecular vibrations to χ(3)

(the Raman effect).



 Both electrons and nuclei respond to the optical field in a 
nonlinear manner. 

 The nuclei response is inherently slower compared with the 
electronic response. 

 For silica fibers, the vibrational or Raman response occurs 
over a time scale 60–70 fs. 

 Thus, Eq. (2.3.6) is approximately valid for pulse widths >1 
ps.



 When Eq. (2.3.2) is substituted in Eq. (2.3.6), PNL(r, t) is 
found to have a term oscillating at ω0 and another term 
oscillating at the third-harmonic frequency 3ω0.

 The latter term requires phase matching and is generally 
negligible in optical fibers.



 To obtain the wave equation for the slowly varying amplitude 
E(r, t), it is more convenient to work in the Fourier domain.

 This is generally not possible as Eq. (2.3.1) is nonlinear 
because of the intensity dependence of εNL. 

 In one approach, εNL is treated as a constant during the 
derivation of the propagation equation.

 The approach is justified in view of the 
– slowly varying envelope approximation
– perturbative nature of PNL.



 Substituting Eqs. (2.3.2) through (2.3.4) in Eq. (2.3.1), the 
Fourier transform (r,ω −ω0), defined as

is found to satisfy the Helmholtz equation (k0 = ω/c )

E



 Substituting Eqs. (2.3.2) through (2.3.4) in Eq. (2.3.1), the 
Fourier transform (r,ω −ω0), defined as

is found to satisfy the Helmholtz equation (k0 = ω/c )

the dielectric constant

nonlinear part εNL

E



 The dielectric constant can be used to define the refractive index 
�𝑛𝑛 and the absorption coefficient�𝛼𝛼.  

 Both �𝑛𝑛 and�𝛼𝛼 become intensity dependent because of εNL.   It is 
customary to introduce

 Using ε = ( �𝑛𝑛 +i �𝛼𝛼 /2k0)2 and Eqs. (2.3.8) and (2.3.11), the 
nonlinear-index coefficient n2 and the two-photon absorption 
coefficient α2 are given by
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 The linear index n and the absorption coefficient α are 
related to the real and imaginary parts of �𝒙𝒙𝒙𝒙𝒙𝒙 (1) as in Eqs. 
(2.1.15) and (2.1.16). 

 As α2 is relatively small for silica fibers, it is often ignored.



 Equation (2.3.10) (Helmholtz equation ) can be solved by using 
the method of separation of variables. If we assume a solution of 
the form

�̃�𝐴 (z,ω): slowly varying function of z

β0 : wave number 

 Helmholtz Eq. (2.3.10) leads to the following two equations for 
F(x, y) and �̃�𝐴(z, ω):
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 In obtaining Eq. (2.3.16), the second derivative ∂2�̃�𝐴 /∂ z2 was 
neglected since �̃�𝐴 (z, ω) is assumed to be a slowly varying 
function of z.

 The wave number �𝛽𝛽 is determined by solving the eigenvalue 
equation (2.3.15) for the fiber modes using a procedure similar to 
that used in Section 2.2.



 The dielectric constant ε(ω) in Eq. (2.3.15) can be approximated 
by

– Δn : small perturbation 

 Eq. (2.3.15) can be solved using first-order perturbation 
theory. We first replace ε with n2 and obtain the modal 
distribution F(x,y), and the corresponding wave number β(ω).
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 For a single-mode fiber, F(x,y) corresponds to the modal 
distribution of the fundamental fiber mode HE11 given by Eqs. 
(2.2.12) and (2.2.13), or by the Gaussian approximation (2.2.14).

 We then include the effect of Δn in Eq. (2.3.15). 

 In the first-order perturbation theory, Δn does not affect the 
modal distribution F(x,y).

 The eigenvalue �𝜷𝜷 becomes

Where
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 This step completes the formal solution of Eq. (2.3.1) to the first 
order in perturbation PNL. 

 Using Eqs. (2.3.2) and (2.3.14), the electric field E(r, t) can be 
written as :

A(z, t) : the slowly varying pulse envelope
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 The Fourier transform �̃�𝐴 (z,ω −ω0) of A(z, t) satisfies Eq. (2.3.16), 
which can be written as

we used Eq. (2.3.19)
and approximated �𝛽𝛽 2 −β0

2 by 2β0( �𝛽𝛽 −β0). 
 The physical meaning of this equation is clear.
 Each spectral component within the pulse envelope acquires a phase 

shift whose magnitude is both frequency and intensity dependent as 
it propagates down the fiber, .
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 At this point, we can go back to the time domain by taking the 
inverse Fourier transform of Eq. (2.3.22), and obtain the 
propagation equation for A(z, t).

 As an exact functional form of β(ω) is rarely known, it is useful to 
expand β(ω) in a Taylor series around the carrier frequency ω0 as

where β0 ≡ β(ω0) and other parameters are defined as

 A similar expansion should be made for Δβ(ω), i.e.,

Δβm is defined similar to Eq. (2.3.24).
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 The cubic and higher-order terms in the expansion (2.3.23) are 
negligible if the spectral width of the pulse satisfies the condition 
Δω ω0.

 Their neglect is consistent with the quasi-monochromatic 
assumption used in the derivation of Eq. (2.3.22).

 If β2 ≈ 0 for some specific values of ω0, it may be necessary to 
include the β3 term. 

 Under the same conditions, we can use the approximation Δβ ≈ 
Δβ0 in Eq. (2.3.25). 
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 After these simplifications in Eq. (2.3.22), we take the inverse 
Fourier transform using

 During the Fourier-transform operation, ω −ω0 is replaced by 
the differential operator i(∂/∂t).

 The resulting equation for A(z, t) becomes

 The Δβ0 term on the right side of Eq. (2.3.27) includes the effects 
of fiber loss and nonlinearity
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 Using β(ω) ≈ n(ω)ω/c and assuming that F(x,y) in Eq. (2.3.20) 
does not vary much over the pulse bandwidth, Eq. (2.3.27) takes 
the form

 Where the nonlinear parameter γ is defined as
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 In obtaining Eq. (2.3.28) the pulse amplitude A is assumed to be 
normalized such that |A|2 represents the optical power. 

– The quantity γ|A|2 (units of m−1) if n2 (units of m2/W )  

 The parameter Aeff (effective mode area) is defined as

– Its evaluation requires the use of modal distribution F(x,y) for the 
fundamental fiber mode. 

– Aeff depends on fiber parameters such as the core radius and the 
core–cladding index difference.

– If F(x,y) is approximated by a Gaussian distribution ,  Aeff = πw2. 
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 The width parameter w depends on the V parameter of fiber 
and can be obtained from Figure 2.1 or Eq. (2.2.10). 

– Aeff can vary in the range of 1 to 100 μm2 in the 1.5-μm
region (depending on the fiber design)

– γ takes values in the range 1–100 W−1/km (if n2 ≈ 2.6×10-20 

m2/W ). 

 For highly nonlinear fibers, Aeff is reduced intentionally to 
enhance the nonlinear effects.



 Eq. (2.3.28) describes propagation of picosecond optical 
pulse in single-mode fibers

– It is related to the nonlinear Schr�̈�𝐨dinger (NLS) equation and 
it can be reduced to that form under certain conditions. 

– It includes the effects

• of fiber losses through α, 

• of chromatic dispersion through β1 and β2,

• of fiber nonlinearity through γ. 
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 Briefly, the pulse envelope moves at the group velocity vg ≡ 
1/β1, while the effects of group-velocity dispersion (GVD) are 
governed by β2.

 The GVD parameter β2 can be positive or negative depending 
on whether the wavelength λ is below or above the zero
dispersion wavelength λD of the fiber

 In the anomalous-dispersion regime (λ > λD), β2 is negative, 
and the fiber can support optical solitons. 

 In standard silica fibers (the change in sign occurring in the vicinity 
of 1.3 μm)
– β2 ∼ 50 ps2/km (visible region)

– β2 ∼ −20 ps2/km (near 1.5 μm)

 The term on the right side of Eq. (2.3.28) governs the nonlinear 
effects of self-phase modulation (SPM).
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Nonlinear Shordinger Equqtion

 https://www.youtube.com/watch?v=5vw0Csy_1rs

https://www.youtube.com/watch?v=5vw0Csy_1rs
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