
Transverse Electric (TE) and Transverse Magnetic 
(TM) modes

 Since ν represents angular dependence of solution, the 
field solution to Ez when v = 0 will be rotationally 
invariant.

 The Equation (8) simplify to 
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 If the first term of Equation (13) is set to zero, then A must also 
be zero to keep the magnitude of B in Equation (11) finite 

 If A=0, then Ez=0, and the electric field will be transverse. Such 
modes are called TE modes
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 If the second term in Equation (10) is zero, then the amplitude B 
will be zero, and the longitudinal component of the H field will 
be zero.

 Such modes are called TM modes
 If ν=0, the allowed modes will be either TE or TM
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 These equation for the TE and TM modes can be simplified using the 
Bessel function relations

 Consider first the TE mode. The first term of Equation (13) should 
be set equal to zero.  Using the relation in Equation (14), the 
eigenvalue  for TE modes become
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 As shown in the figure, it is clear that no TE mode will 
exist if κa <2.405.

 The TE01 mode can only exist if κa >2.405, so the cutoff 
condition for theTE01 mode is κa =2.405.

 The cutoff condition for the TE02 mode occurs at the second 
root of the Bessel function, J0(κa) which occurs 5.520.



 For ν = 0, these modes are analogous to the transverse-electric (TE)
and transverse-magnetic (TM) modes of a planar waveguide
because the axial component of the electric field, or the magnetic
field, vanishes.

In the ray picture, these modes are called skew rays, they travel down the 
waveguide in a screw-like pattern 



Hybrid modes

 For ν�0, the values of β will correspond to modes which have 
finite components of both Ez and Hz and are therefore neither TE 
or TM modes

 The modes called EH or HE modes, depending on the relative 
magnitude of the longitudinal E and H components 

 If A=0 then the mode is called a TE mode
 If B=0 then the mode is called a TM mode
 If A>B then the mode is called an HE mode (Ez dominares Hz)
 If A<B then the mode is called an EH mode (Hz dominares Ez)
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 Both EH and HE modes are called hybrid modes because they 
have both longitudinal H and E components in the waveguide. 

 The EH and HE modes exist only for ν�1, so they have azimuthal 
structure.

 In the ray picture, these modes are called skew rays, they travel 
down the waveguide in a screw-like pattern 

 The EH and HE mode have complicated field.  The patterns are not 
only difficult to determine, but they are hard to visualize.



Linear Polarized modes (LP mode)

 For many practical optical fibers, the core and cladding index are 
nearly identical. ( ncore ≈ nclad = n ) 

 In the weakly guiding approximation ( ncore ≈ nclad = n ) , Equation 
(8) reduce to Equation (15)

 Noting that if ncore = nclad, then β2 = k0
2n2, and these terms can be 

canceled from both sides.
 Taking advantage of some Bessel function identities, simplifies Eq. 

(15), leaving only

 These are the characteristic equations for the EH (top sign) and HE 
modes (bottom sign)
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 A little more manipulation with Bessel function reduce these two 
equations into one single equation

 The indices define the mode as follows：

 More than one mode has the same eigenvalue, different mode are 
degenerate

 In the weakly guiding approximation, the TE0m is degenerate with the 
TM0m modes 

 They will have the same eigenvalue, β, and will propagate at the same 
velocity. 

 The HEν+1,m modes and EHν-1,m modes are degenerate. 
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 Since degenerate mode travel at the same velocity, this 
degeneracy in β makes it possible to define stable superposition 
of different mode.

 Certain combinations of degenerate modes can be found which 
are linearly polarized

 The superpositions are primarily transverse, meaning Ez is 
negligible.

 The designation and construction of an LP mode is as follow:

LP1m

LPvm

LP0m

Sum of TE0m, TM0m,and HE2m modes
Sum of HEv+1,m and EHv-1,m modes
HE1m mode only (special case)



Practical advantage of the LP modes

 First, the LP mode provide an easy way to visualize the 
structure of the guided modes.
– Most of the energy is stored in the transverse field, there are no 

complications from energy stored in the longitudinal terms

 Second, the LP modes represent actual energy distributions 
that a polarized source would excite in a fiber.

 Finally, LP modes allow for a simplified  characteristic 
equation that can be solved with straightforward or 
graphical techniques



Disadvantages of LP modes

 LP mode are not true mode, but are a superposition of 
slightly nondegenrate mode
– The individual EH, HE, TM, and TE modes travel at slightly 

different velocities
– The polarization of initial superposition will change as the 

mode propagate down the axis of guide
 The LP mode are only an approximation of the true mode 

structure of the guide
 They allow a simple way to visualize the mode, and describe 

the actual field patterns excited by the real sources



 The wave equation for �𝐸𝐸z is easily solved by using the method of 
separation of variables, resulting in the following general solution:

A: depends only on the frequency ω, 
β: the propagation constant,
m : an integer, 

 F(ρ) is the solution of Bessel functions.

n = n1 (ρ ≤ a ,fiber of core radius a)
n = nc ( ρ > a)



 Its general solution inside the core can be written as

Jm(x):  Bessel function 

Nm(x) : Neumann function

p = (n1
2k0

2−β2)1/2



 The constants C1 and C2 are determined using the boundary 
conditions. 

 C2 = 0 for a physically meaningful solution (Nm(pρ) has a singularity
at ρ = 0) 

 The constant C1 can be absorbed in A appearing in Eq. (2.2.3). Thus,

p = (n1
2k0

2−β2)1/2

 In the cladding region (ρ ≥ a), the modified Bessel function Km
represents the solution F(ρ) such that it decays exponentially for large 
ρ. 

q = (β2−nc
2k0

2)1/2

 The same procedure can be followed to obtain the magnetic field 
component Hz.



 The boundary condition that the tangential components of �𝐸𝐸 and 
�𝐻𝐻 be continuous across the core-cladding interface requires that �𝐸𝐸z, 
�𝐻𝐻z, �𝐸𝐸φ , and �𝐻𝐻φ be the same when ρ = a is approached from inside or 
outside the core.

 The equality of these field components at ρ = a leads to an 
eigenvalue equation whose solutions determine the propagation 
constant β for the fiber modes. 

 The eigenvalue equation:

a prime denotes differentiation with respect to the argument
 we used the important relation



 The eigenvalue equation (2.2.8) in general has several solutions for 
β for each integer value of m. 

 It is customary to express these solutions by βmn, where both m 
(angular mode number) and n (radial mode number) take integer 
values.

 Each eigenvalue βmn corresponds to one specific mode supported by 
the fiber.

 The corresponding modal field distribution is obtained from 
Eq.(2.2.3).

 There are two types of fiber modes, designated as HEmn and EHmn.



 For m = 0, these modes are analogous to the transverse-
electric (TE) and transverse-magnetic (TM) modes of a 
planar waveguide because the axial component of the 
electric field, or the magnetic field, vanishes. 

 However, for m > 0, fiber modes become hybrid, i.e., all six 
components of the electromagnetic field are nonzero.



 The number of modes supported by a specific fiber at a given 
wavelength depends on its design parameters, 
– the core radius a
– the core-cladding index difference n1−nc.

 An important parameter for each mode is its cut-off frequency. This 
frequency is determined by the condition q = 0. 

 The value of p when q = 0 for a given mode determines the cut-off 
frequency from Eq. (2.2.9).

 It is useful to define a a normalized frequency V

pc is obtained from Eq. (2.2.9) by setting q = 0

2.2.2 Single Mode Condition

.



 The eigenvalue equation (2.2.8) can be used to determine the 
values of V at which different modes reach cut-off.

 Since we are interested mainly in single-mode fibers, we limit the 
discussion to the cut-off condition that allows the fiber to support 
only one mode ( single-mode fibers,).

 A single-mode fiber supports only the HE11 mode (fundamental 
mode).

 All other modes are beyond cut-off if the parameter V < Vc, where 
Vc is the smallest solution of J0(Vc) = 0 or Vc ≈ 2.405. 



 Typically, microbending losses increase as V/Vc becomes small.
 In practice, fibers are designed such that V is close to Vc. 

 The cut-off wavelength λc for single-mode fibers can be obtained by 
using k0 = 2π/λc and V = 2.405 in Eq.(2.2.10).

 For a typical value of index difference n1−nc = 0.005, λc = 1.2 μm and a 
= 4 μm, 
– such a fiber supports a single mode only for λ > 1.2 μm.

 In the visible region, core radius should be below 2 μm for a fiber to 
support a single mode.



2.2.3 Characteristics of the Fundamental Mode

 The field distribution E(r, t) corresponding to the HE11 mode has 
three Nonzero components (either Ex or Ey dominates)

– Cylindrical coordinates Eρ , Eφ , and Ez

– Cartesian coordinates Ex , Ey , and Ez

 To a good degree of approximation, the fundamental fiber mode is 
linearly polarized in either the x or y direction depending on whether 
Ex or Ey dominates 

 Even a single-mode fiber is not truly single mode because it can 
support two modes of orthogonal polarizations.



 The fundamental mode HE11 corresponds to LP01 (LPmn denote 
the linearly polarized modes)

 Under ideal conditions, the two orthogonally polarized modes 
of a single-mode fiber are degenerate (with the same 
propagation constant).

 Certain combinations of degenerate modes can be found => 
linearly polarized

LP1n

LPmn

LP0n

Sum of TE0n, TM0n,and HE2n modes
Sum of HEm+1,n and EHm-1,n modes
HE1n mode only (special case)



 The LP11 mode is a superposition of the TE01 and HE21 modes.

 Note that the LP mode is linearly polarized, in contrast to the electric 
fields of the two constituent modes. 

Five different modes 
in a step-index 
circular waveguide 



 Irregularities such as random variations in the core shape and size
along the fiber length break this degeneracy slightly
– Mix the two polarization components randomly, and scramble

the polarization of  the incident light as it propagates down the 
fiber.

 Polarization-preserving fibers can maintain the linear polarization 
if the light is launched with its polarization along one of the 
principal axes of the fiber.



 Assuming that the incident light is polarized along a principal axis
(chosen to coincide with the x axis), the electric field for the 
fundamental fiber mode HE11 is approximately given by

A(ω)：Normalization constant; β(ω)：Propagation constant

– F(x, y)： transverse distribution 

• Inside the core

F(x, y) = J0(pρ), ρ ≤ a      (2.2.12)

• Outside the core

F(x, y) = (a/ρ)1/2J0(pa)exp[−q(ρ−a)], ρ ≥ a      (2.2.13)

ρ = (x2＋y2)1/2   (Radial distance)

 Km(qρ) in Eq. (2.2.7) was approximated by the leading term in it 
asymptotic expansion and a constant factor was added to ensure the 
equality of F(x,y) at ρ = a.

(2.2.11)



 Assuming that the incident light is polarized along a principal axis
(chosen to coincide with the x axis), the electric field for the 
fundamental fiber mode HE11 is approximately given by

A(ω)：Normalization constant; β(ω)：Propagation constant 

 The propagation constant β(ω) in Eq. (2.2.11) is obtained by solving the 
eigenvalue equation (2.2.8).

 The frequency dependence of β(ω) results 

– Material dispersion: frequency dependence of n1 and nc

– Waveguide dispersion: frequency dependence of p

 Material dispersion generally dominates unless the light wavelength is 
close to the zero-dispersion wavelength.

 The effective mode index is related to β by neff = β/k0

(2.2.11)



 As the use of modal distribution F(x,y) in given by Eqs. (2.2.12) and 
(2.2.13) is cumbersome in practice

 The fundamental fiber mode is often approximated by a Gaussian 
distribution of the form

F(x, y) ≈ exp[−(x2+y2)/w2]   (2.2.14)
– w：width parameter, determined by curve fitting or by 

following a variational procedure.

 For a specific value V=2.4, the 
comparison of the actual field 
distribution with the fitted Gaussian 

 The quality of fit is generally quite 
good, particularly for V values in the
neighborhood of  2.



 Figure shows that w ≈ a for V=2, indicating that the core 
radius provides a good estimate of w for telecommunication 
fibers for which V≈2.

 For V < 1.8, w can be significantly larger than a

 When 1.2 <V < 2.4 
(accurate to within 1%)

w/a ≈ 0.65+1.619V−3/2+2.879V−6

(2.2.15)

 This expression is of considerable practical value as it 
expresses the mode width in terms of a single fiber 
parameter V.
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