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But a light bulb is also broadband.

What else is required to make an ultrashort
pulse?

Answer: “Mode-locking”

Okay, what are modes and what does it mean to
lock them?



Mode locking

>

>

>

Mode locking is a dynamic steady-state process, differs previous
the three pulse-generation

Pulsed laser action is attained by coupling together the modes of a
laser and locking phase to each other

A laser can oscillate on many longitudinal modes, with frequencies
that are equally separated by the Fabry-Perot intermodal spacing v,
=c/2d

Although these modes normally oscillate independently (free-
running modes), external means can be used to couple them and
lock their phase together

The modes can be regarded as the components of a Fourier-series
expansion of a periodic function of time of period T = 1/ v = 2d/c,
which constitute a periodic pulse train.



» Each of laser modes is approximated by a uniform plane wave
propagating with a velocity ¢ = c,/n

Uz,t) = Agexp |j2mvg (- =), (15.4-25)
q

C

Vg = Vo + qUF, i = Uyl il s (15.4-26)

» For convenience, we assume that the g = 0 mode coincides with
the central frequency v, of the atomic lineshape

» Since the modes interact with different groups of atoms in an
iInhomogeneously broadened medium, their phases arg{A,} are
random and statistically independent
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» Substituting (15.4-26) into (15.4-25) =>

Ulz,t) = A (t = f) exp [j27r1/0 (t _ %)] , (15.4-27)

C

» Complex envelope

g2
At) = Agexp (7 qTF”t) (15.4-28)
q
s e B (15.4-29)
Vg C

» If the magnitudes and phases of the complex coefficients
A, are properly chosen, A(t) may be made to take the form of
periodic narrow pulses
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» Consider M modes (M = 25+1), A=A, q=0£1,...,£S

S : S (2% [ gl gl
7q2mt & BT = x°T2 —x Y72
= — = — A

A(t) Aq;sexp( T. ) A Z = o T

—_ | T2 — 1
(15.4-30)
@ % | X = exp(j2nt/Te)
A(t) = A Si;ff(‘i :;/TZ‘; ) (15.4-31)

_ _ o A — 1Al sin? [Mn(t — z/c)/ T]
» The optical intensity = | 1(t,2) = |A]" —— =270/ (15.4-32)

Photonic Technology Lab.



» The shape is dependent on the number of modes M
» T M= AV, 1y = THM = 1/AV

» Because Av can be quite large, very narrow mode-locked
laser pulses can generated

» The ratio between the peak and mean intensities Is equal to
the number of modes M (also quite large)

» The period of the pulse train (T = 2d/c) is just the time for a
single round trip of reflection within the resonator
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» The light in a mode-locked laser can be regarded as

A single narrow pulse of photons reflecting back and forth
between the mirrors of the resonator

The transmitted pulses are separated by the distance 2d
and have a spatial width d s, = €7, e = 2d/M

A Y A Y

Y Y

e 2d

Y

o A
. B
d uisce é
L k o

I d

i

Photonic Technology Lab.



> A particular example : Nd3* :glass laser
Operating at A, = 1.05 pum, refractive index n = 1.5 and linewidth Av =7 THz
Thus , pulse duration 7, = 1/ Av =140 fs and pulse length d . = 42 um
If the length of the resonator d = 15 cm, the mode separation v = ¢/2d = 1 GHz
M = Av/ve = 7000 modes, the peak intensity is 7000 times greater than the average
intensity

» In media with broad linewidths
Mode locking is generally more advantageous than Q-switching for obtaining short pulses

» Gas lasers generally have narrow atomic linewidths, so that ultrashort
pulses cannot be obtained by mode locking

Table 15.4-1 Characteristic properties of a mode-locked pulse train.

, 2d
Temporal period Ty = — Pulse duration Tpulse = E = i
c M Av

Spatial iod 24

patial perio 2d Pulse length Ot = i
Mean intensity I Peak intensity Ly =MT
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Mode-locked laser

Mode - Locked Laser

T

~ Pp =~ N-Pyy

N : Number of locked modes
P..: Average output power

»Radiation power as a function of time at the output of a stationary mode-
locked laser



Mode Locking with one and two oscillation
frequency

E(t)=EO eiNa)t E(t)=EO eiNa)t_I_EO ei(N—l)a)t
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Ultrashort pulse can be generate as number of modes M
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Numerical simulation of mode-locking
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Ultrafast lasers often have thousands of modes.
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Locked modes

| :4—50 Modes

5 Modes

Resonator round-trip time

M. Didomenico, J. Appl. Phys. Lett. 35, 2870 (1964); L. Hargrove et al., Appl. Phys. Lett 5, 4 (1964)



Video of mode locking

Linking
» https://www.youtube.com/watch?v=efxFduO2Y8

PRINCIPLES OF MODE-LOCKING - PASSIVELY MODE-LOCKED LASERS
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https://www.youtube.com/watch?v=efxFduO2Yl8

Lecture of mode locking

> https://www.youtube.com/watch?v=Jf-hQzVsLJ8

P » ¢ 31:14/50:47



https://www.youtube.com/watch?v=Jf-hQzVsLJ8

How to generate ultrafaser laser

* Mode locking method:
» Active mode locking

O Electro-optical
modulator

O Acoustic-optical
modulator

» Passive mode locking
0 Saturable absorber

O Semiconductor saturable
absorber mirror
(SESAM)

O Kerr lens mode locking

0 Nonlinear mirror mode
locking

b

A generic ultrafast laser has a broadband gain
medium,a loss modulator device, and two or
more mirrors:

Laser resonator

;—-"____—— — T r—— T,
"
[\ Gain Loss
. o
Output . Hi
Cavity length
coupler yleng re

Photonic Technology Lab.



Active and Passive Mode Locking

The acoustic-optical or electro-
optical modulator => periodic
sinusoidal loss modulation => equal
the cavity round trip time

A saturable absorber => to obtain a
self-amplitude modulation of the
light inside the laser cavity.

Loss modulation => Relatively
large for low intensities but
significantly smaller for a short
pulse with high intensity.

The high intensity @ the peak of
pulse => saturates the absorber
more strongly than its low intensity
wings => pulse shaping effect

Active modelnr:king
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A generic ultrashort-pulse laser

» A generic ultrafast laser has a broadband gain medium, a pulse-
shortening device, and two or more mirrors:

( »A. > A

I | Gain medium | | Pulse-shortening device | I —

Partially
_ reflecting
' Continuous laser output mirror

pump source

Many pulse-shortening devices have been proposed and used.



Kerr lens mode locking

Spatial AR =y

Monlinear medium
Kearr lens Aperture

¢

Incident beam Intense pulse

Low intensity light

Self-focusing and aperture => high intensity pulse for low loss
Temporal

Longitudinal Kerr effect:

E self-phase modulation
z Aincrease @
An(z) = n,l(2) Ieading edge

Self-phase modulation (SPM) and negative group velocity dispersion (GVD)=>
pulse shaping effect
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Continuous vs. ultrashort pulses of light

» A constant and a delta-function are a Fourier-Transform pair.

Irradiance vs. time Spectrum
A
Continuous beam:
- > >
time frequency
A

Ultrashort pulse:

. > >
time frequency




Long vs. short pulses of light

» The uncertainty principle says that the product of the temporal
» and spectral pulse widths is greater than ~1.

Irradiance vs. time Spectrum

Long pulse

time frequency

Short pulse

: > >
time frequency




For many vears, dxes have been the broadband

media that have generated ultrashort laser pulses.
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Ultrafast solid-state laser media have recently

reEIaced dxes IN most labs.

» Solid-state laser media have broad bandwidths and are

convenient.
C Ti:Sapphire Cr:LiSGaF Cr:Forsterite CriYAG
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Titanium Sapphire

» Ti:Sapphire is currently the workhorse laser of the ultrafast community,
emitting pulses as short as a few fs and average power in excess of a
Watt.

A A
It can be pumped L O
with a (continuous) -EéjL 2
Argon laser (~450- S £
5 5

515 nm) or a
doubled-Nd:YAG
laser (532 nm).

It lases well between

700 and 1000 nm. . .
400 600 800 1000 nm




Ti:sapphire laser

» Series of broad-bandwidth, solid-state laser materials were
developed
»The most notable : Ti:sapphire (Ti:Al,O,)
»Lased over a continuous band stretching 680 ~ 1100 nm.
» Pulse width as shorter as 200 fs in late 1989 using additive pulse
mode-locking (APM)

»APM is accomplished by feeding back into the laser part of its output
after it has been nonlinearly modulated in an external cavity

(B) output
Ap=xI(7)
gain media (g)
=] il (0)) 1l

Z—7 | |

beam splitter (A) — <

> < phase offset (¢)

A B

An intracavity interferometer with a nonlinear phase modulator, to which an additive-
pulse mode-locking laser is equivalent. opTics LETTERS / Vol. 16, No. 14 / July 15, 1991



Ti:sapphire laser

» In 1991, observed self-mode-locking or Kerr lens ML
»Because of nonlinearity present in laser crystal
» Nonlinear refraction index n, introduces an intensity dependent index
given by n =n, + n,l
>N, : linear index of the crystal
> | : instantaneous laser pulse intensity
» Self-focusing when light focuses into crystal
» Nonlinear phase delay of the beam will be highest at center of the beam
» Additional lens in cavity with intense pulse (not for low-intensity)
» Cavity alignment can be adjusted
»Pulse spatial mode suffers less loss than CW spatial mode

intensity self-focusing

ALY

TD-—-— oo =
?

aperture




Ti:sapphire laser

» When self-focusing is induced the ML profile will match the pump
mode, and will favor pulse operation

»Because this ML is induced by the pulse itself, is said to self-ML, and the
effect is the same as if a fast SA were present in cavity

» Today Ti.sapphire lasers can generate 25 fs pulses with not to much
difficulty

» Allowing researchers to explore semiconductor dynamics at very short
time scales

» 6.5 fs pulses from a Ti:sapphire laser

»Combination of prism pair & double-chirped mirror for dispersion
compensation
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Ti:sapphire laser (Z-configuration)
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Sub-two-cycle pulses from a Kerr-lens mode-locked

Ti:sagghire laser

Interferometric autocorrelation
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Video of Ti:sapphire laser

https://www.youtube.com/watch?v=KX6h9CVXYKA

Mode locked femtosecond titanium saphire laser.mp4 0o »
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https://www.youtube.com/watch?v=KX6h9CVXYkA

Pulse compression (SPM+GVD)

> https://www.youtube.com/watch?v=162aDMONhATf0
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’ - P ERe e eue™

(prismes) <

._.’

‘ Milieu
dispersif

‘trerbiumrglass femtoseconda
semeseillatorlaser diode pumpe

4

v

| o) 1:29/2:47 t O


https://www.youtube.com/watch?v=l62aDMONhf0

Pulse compression by GVD

> https://www.youtube.com/watch?v=Be XWyfAk504

Analysis and Control of Ultrashort Pulses - An Overview

Important optical setups for ultrashort pulses

Analysis, design and optimi-
zation of optical setups and
components like:

Focusing optics
Pulse compressor & stretcher
Chirped mirrors

Refractive and diffractive
beam shapers

Gratings

Spatial and spectral filters

> » ) 1:537279


https://www.youtube.com/watch?v=BeXWyfAk5O4

Signal Processing at Light Speed

» https://www.youtube.com/watch?v=yh3hXI4ywq0

Signal\Processing.at-Light.Speed:UltrashortiOptical Pulse’Generation:. (Andrew.\einer)
Many antennas are highly dispersive!
(Phase response becomes very important for time domain systems)
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30. Orthogonal Spectral Codes
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https://www.youtube.com/watch?v=yh3hXI4ywq0

The full output in plotted with ;, = 100 ,m, for two mirrors with = 0.5 and , = 0.9.
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Series of transmission peaks as the reflectance increase.

The Fabry-Perot is thus operating as a very narrow band pass-filter.
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A generic ultrashort-pulse laser

» A generic ultrafast laser has a broadband gain medium, a pulse-
shortening device, and two or more mirrors:

( »A. > A

I | Gain medium | | Pulse-shortening device | I —

Partially
_ reflecting
' Continuous laser output mirror

pump source

Many pulse-shortening devices have been proposed and used.



Active and Passive Mode Locking

The acoustic-optical or electro-
optical modulator => periodic
sinusoidal loss modulation => equal
the cavity round trip time

A saturable absorber => to obtain a
self-amplitude modulation of the
light inside the laser cavity.

Loss modulation => Relatively
large for low intensities but
significantly smaller for a short
pulse with high intensity.

The high intensity @ the peak of
pulse => saturates the absorber
more strongly than its low intensity
wings => pulse shaping effect

Active moclelncking
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