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But a light bulb is also broadband.

What else is required to make an ultrashort 

pulse?

Answer: “Mode-locking”

Okay, what are modes and what does it mean to 

lock them?



Mode locking

 Mode locking is a dynamic steady-state process, differs previous 

the three pulse-generation

 Pulsed laser action is attained by coupling together the modes of a 

laser and locking phase to each other

 A laser can oscillate on many longitudinal modes, with frequencies 

that are equally separated by the Fabry-Perot intermodal spacing F

= c/2d

 Although these modes normally oscillate independently (free-

running modes), external means can be used to couple them and 

lock their phase together

 The modes can be regarded as the components of a Fourier-series 

expansion of a periodic function of time of period TF = 1/ F = 2d/c , 

which constitute a periodic pulse train.



 Each of laser modes is approximated by a uniform plane wave 

propagating with a velocity c = c0/n

 For convenience, we assume that the q = 0 mode coincides with 

the central frequency 0 of the atomic lineshape 

 Since the modes interact with different groups of atoms in an 

inhomogeneously broadened medium, their phases arg{Aq} are 

random and statistically independent



 Substituting (15.4-26) into (15.4-25) =>

 Complex envelope

 If the magnitudes and phases of the complex coefficients 

Aq are properly chosen, A(t) may be made to take the form of 

periodic narrow pulses



 Consider M modes (M = 2S+1), Aq = A,  q = 0,1, …, S

x = exp(j2πt/TF)

 The optical intensity =



 The shape is dependent on the number of modes M

 If M ≈ Δ/F, pulse = TF/M ≈ 1/Δ

 Because Δ can be quite large, very narrow mode-locked 

laser pulses can generated

 The ratio between the peak and mean intensities is equal to 

the number of modes M (also quite large)

 The period of the pulse train (TF = 2d/c)  is just the time for a 

single round trip of reflection within the resonator



 The light in a mode-locked laser can be regarded as

A single narrow pulse of photons reflecting back and forth 

between the mirrors of the resonator

The transmitted pulses are separated by the distance 2d

and have a spatial width dpulse = cpulse = 2d/M



 A particular example : Nd3+ :glass laser 

Operating at 0 = 1.05 m, refractive index n = 1.5 and linewidth Δ =7 THz 

Thus , pulse duration pulse = 1/ Δ ≈ 140 fs and pulse length dpulse ≈ 42 m

If the length of the resonator d = 15 cm, the mode separation F = c/2d = 1 GHz 

M = Δ/F = 7000 modes, the peak intensity is 7000 times greater than the average 

intensity

 In media with broad linewidths 
Mode locking is generally more advantageous than Q-switching for obtaining short pulses

 Gas lasers generally have narrow atomic linewidths, so that ultrashort

pulses cannot be obtained by mode locking   



Mode-locked laser

Radiation power as a function of time at the output of a stationary mode-

locked laser



Mode Locking with one and two oscillation 
frequency  
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Ultrashort pulse can be generate as number of modes M 

increase



Numerical simulation of mode-locking

Ultrafast lasers often have thousands of modes.



Locked modes



Video of mode locking

Linking
https://www.youtube.com/watch?v=efxFduO2Yl8

https://www.youtube.com/watch?v=efxFduO2Yl8


Lecture of mode locking

 https://www.youtube.com/watch?v=Jf-hQzVsLJ8

https://www.youtube.com/watch?v=Jf-hQzVsLJ8


How to generate ultrafaser laser
• Mode locking method:

 Active mode locking

 Electro-optical 

modulator

 Acoustic-optical 

modulator

 Passive mode locking

 Saturable absorber

 Semiconductor saturable

absorber mirror 

(SESAM)

 Kerr lens mode locking

 Nonlinear mirror mode 

locking

A generic ultrafast laser has a broadband gain 
medium,a loss modulator device, and two or 
more mirrors:



Active and Passive Mode Locking

 The acoustic-optical or  electro-

optical modulator => periodic 

sinusoidal loss modulation => equal 

the cavity round trip time

 A saturable absorber => to obtain a 

self-amplitude modulation of the 

light inside the laser cavity. 

 Loss modulation => Relatively 

large for low intensities but 

significantly smaller for a short 

pulse with high intensity.

 The high intensity @ the peak of 

pulse => saturates the absorber 

more strongly than its low intensity 

wings => pulse shaping effect



A generic ultrashort-pulse laser

A generic ultrafast laser has a broadband gain medium, a pulse-

shortening device, and two or more mirrors:

Many pulse-shortening devices have been proposed and used.



Kerr lens mode locking

Spatial

Temporal

Self-focusing and aperture => high intensity pulse for low loss

Self-phase modulation (SPM) and negative group velocity dispersion (GVD)=> 

pulse shaping effect 

increase @ 

leading edge



But first: the progress has been amazing!

YEAR

Nd:glass

S-P DyeDye

CW Dye

Nd:YAG

Diode

Nd:YLF

Cr:YAG

Cr:LiS(C)AF

Er:fiber

Cr:forsterite

Ti:sapphire

CPM

w/Compression

Color
Center

1965     1970      1975   1980     1985 1990      1995

Dye

2000

S
H

O
R

T
E

S
T

 P
U

L
S

E
 D

U
R

A
T

IO
N

10ps

1ps

100fs

10fs

2005

Nd:fiber

Erich Ippen,

MIT

The shortest pulse vs. 

year (for different 

technologies)



Continuous vs. ultrashort pulses of light

 A constant and a delta-function are a Fourier-Transform pair.

Continuous beam:

Ultrashort pulse:

Irradiance vs. time Spectrum
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Long vs. short pulses of light

 The uncertainty principle says that the product of the temporal

 and spectral pulse widths is greater than ~1.

Long pulse

Short pulse
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For many years, dyes have been the broadband 

media that have generated ultrashort laser pulses.



Ultrafast solid-state laser media have recently 

replaced dyes in most labs.

 Solid-state laser media have broad bandwidths and are 

convenient.
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Titanium Sapphire

Ti:Sapphire is currently the workhorse laser of the ultrafast community, 

emitting pulses as short as a few fs and average power in excess of a 

Watt.

It can be pumped 

with a (continuous) 

Argon laser (~450-

515 nm) or a 

doubled-Nd:YAG 

laser (532 nm).

It lases well between 

700 and 1000 nm.



Ti:sapphire laser

 Series of broad-bandwidth, solid-state laser materials were 

developed

The most notable : Ti:sapphire (Ti:Al2O3)

Lased over a continuous band stretching 680 ~ 1100 nm.

 Pulse width as shorter as 200 fs in late 1989 using additive pulse 

mode-locking (APM)

APM is accomplished by feeding back into the laser part of its output 

after it has been nonlinearly modulated in an external cavity

An intracavity interferometer with a nonlinear phase modulator, to which an additive-

pulse mode-locking laser is equivalent. OPTICS LETTERS / Vol. 16, No. 14 / July 15, 1991



Ti:sapphire laser

 In 1991, observed self-mode-locking or Kerr lens ML

Because of nonlinearity present in laser crystal

 Nonlinear refraction index n2 introduces an intensity dependent index 

given by n = n0 + n2I

n0 : linear index of the crystal

I : instantaneous laser pulse intensity

 Self-focusing when light focuses into crystal

 Nonlinear phase delay of the beam will be highest at center of the beam

 Additional lens in cavity with intense pulse (not for low-intensity)

 Cavity alignment can be adjusted

Pulse spatial mode suffers less loss than CW spatial  mode



Ti:sapphire laser

 When self-focusing is induced the ML profile will match the pump 

mode, and will favor pulse operation

Because this ML is induced by the pulse itself, is said to self-ML, and the 

effect is the same as if a fast SA were present in cavity

 Today Ti:sapphire lasers can generate 25 fs pulses with not to much 

difficulty

 Allowing researchers to explore semiconductor dynamics at very short 

time scales

 6.5 fs pulses from a Ti:sapphire laser

Combination of prism pair & double-chirped mirror for dispersion 

compensation



Ti:sapphire laser (Z-configuration)



Sub-two-cycle pulses from a Kerr-lens mode-locked 

Ti:sapphire laser

The dashed curve is a fit of a sinc function with 

a FWHM of 5.4 fs, and the solid curve is the 

calculation from the spectrum

Interferometric autocorrelation



Video of Ti:sapphire laser

https://www.youtube.com/watch?v=KX6h9CVXYkA

https://www.youtube.com/watch?v=KX6h9CVXYkA


Pulse compression (SPM+GVD)

 https://www.youtube.com/watch?v=l62aDMONhf0

https://www.youtube.com/watch?v=l62aDMONhf0


Pulse compression by GVD

 https://www.youtube.com/watch?v=BeXWyfAk5O4

https://www.youtube.com/watch?v=BeXWyfAk5O4


Signal Processing at Light Speed

 https://www.youtube.com/watch?v=yh3hXI4ywq0

https://www.youtube.com/watch?v=yh3hXI4ywq0


Series of transmission peaks as the reflectance increase.



A generic ultrashort-pulse laser

A generic ultrafast laser has a broadband gain medium, a pulse-

shortening device, and two or more mirrors:

Many pulse-shortening devices have been proposed and used.



Active and Passive Mode Locking

 The acoustic-optical or  electro-

optical modulator => periodic 

sinusoidal loss modulation => equal 

the cavity round trip time

 A saturable absorber => to obtain a 

self-amplitude modulation of the 

light inside the laser cavity. 

 Loss modulation => Relatively 

large for low intensities but 

significantly smaller for a short 

pulse with high intensity.

 The high intensity @ the peak of 

pulse => saturates the absorber 

more strongly than its low intensity 

wings => pulse shaping effect


