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22.1 Pulse Characteristics

A. Temporal and Spectral Characteristics

A pulse of light is described by an optical field of finite time 

duration.

We represent the field components with a generic normalized

complex wavefunction U(r,t) such that the optical intensity 

I(r,t) = | U(r,t) |2 (W/m2)

When we are concerned with only the temporal or spectral 

properties of a  pulse at a fixed position r

• We will simply use the functions U(t) and I(t) .



The complex wavefunction describing an optical pulse of 

central frequency ν0 is written in  

 The complex envelope is characterized by its magnitude |A(t)|  

and  phase φ(t) = arg{A(t)}, 

 Thus, complex wavefunction 
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where

A(t) : complex envelope
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 The intensity profiles of typical pulses include :  

Gaussian function :

Lorentzian function :

hyperbolic secant function      

 In the spectral domain, the pulse is described by the Fourier 

transform 

Temporal and Spectral Representations
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where ψ(ν) : spectral phase
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Temporal and Spectral Representations

 The Fourier transform of the complex envelope A() is  centered at 

= 0

 If the pulse has a narrow spectral width, then the complex envelope 

is a slowly varying function of time, but this is not the case for 

ultranarrow pulses with ultrawide spectral distributions. 
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 We will use the full-width half-max (FWHM) definition and 

denote the temporal and spectral widths as τFWHM and Δν .

The spectral width is inversely proportional to the temporal 

width because of the Fourier transform relation between U(t) 

and V(ν).

 For a Gaussian pulse

Temporal and Spectral Widths
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 The spectral intensity S(ν) is often plotted as a function of the 

wavelength,   Sλ(λ) .

• For ultranarrow pulses, 

( Δν << ν0 )
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• A 2-fs pulse,

• spectral width Δν = 220THz,

• Δλ = 847  nm at  λ0 = 1μm,

• i.e., the spectrum is quite broad and extends from visible through  

infrared.



Instantaneous Frequency

 The instantaneous angular frequency ωi is the derivative of 

the phase of U(t), and the instantaneous frequency νi = ωi / 2π

 If the phase is a linear function of time, φ(t) =2πft , then the 

instantaneous frequency νi = ν0 + f

 A linearly varying phase corresponds to a fixed frequency 

shift.

 Nonlinear time dependence of the phase corresponds to time-

dependent  instantaneous frequency.



Chirped Pulses

 A pulse is said to be chirped, or frequency modulated(FM), if its 

instantaneous  frequency is time varying.

 If vi is increasing function of time at the pulse center (t=0), the pulse is 

said to be up-chirped,  i.e., φ〞= d2φ/dt2 > 0

 If vi is decreasing function of time at the pulse center, the pulse is said to 

be down-chirped, i.e., φ〞= d2φ/dt2 < 0
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 If the phase of an optical pulse of width τ is a quadratic 

function of time  

a : constant

 The instantaneous frequency is a linear function of time.

 The pulse is said to be linearly chirped.

• a > 0 ,the pulse is up-chirped.

• a < 0 ,the pulse is down-chirped.
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 At t = τ / 2 , the instantaneous frequency increases by a / 2πτ, 

which is of the order of magnitude of aΔν

 Thus, the chirp parameter is indicative of the ratio between 

the instantaneous frequency change d at the pulse half-

width point and the spectral width Δν.
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Chirped Pulses

 If the dependence of the phase φ on time is an arbitrary

nonlinear function.

 Then it can be approximated by a Taylor-series expansion in 

the vicinity of the pulse center.

 The chirp coefficient a represents the lowest-order chirping 

effect resulting from the quadratic term of the expansion.



Time-Varying Spectrum

 It is often useful to trace the spectral changes of a time-

varying pulse throughout its time course.

• Such changes are obscured in the Fourier transform, which 

only provides an  average spectral representation of the entire 

signal without noting which frequencies occur at which time.

• This is particularly evident if the signal is composed of a 

sequence segments each with a different spectral composition.

 A commonly used measure is based on a sliding windows (or 

gate) that selects only one short time segment at a time, and 

obtains Fourier transform of the pulse within the window 

duration.



It W(t) is a windows function of short duration T beginning 

at t =0 .

It U(t) is the pulse wavefunction .

The product U(t)W(t-τ) is a segment of the pulse of duration T

beginning at time 

The Fourier transform of segment

Spectrogram

2
),(),(  S

Time-Varying Spectrum



Time-Varying Spectrum

Fig. 22.1-4, the result is plotted as a function of both frequency and time delay.



Autocorrelator

 https://www.youtube.com/watch?v=J1pNHYySSYg

https://www.youtube.com/watch?v=J1pNHYySSYg


Transform-Limited Gaussian Pulse

 A transform-limited Gaussian pulse has constant phase and 

Gaussian magnitude.

– Intensity : I(t)=I0exp(-2t2/τ2)

– τFWHM : 1.18τ

– Fourier transform  of A(t): 

A()=A exp(-π2τ22)   (Gaussian function)

– Spectral intensity : S( )=A2exp(-2π2τ22)

– ∆=0.375/τ=0.44/τFWHM => ∆τFWHM = 0.44

 The transform-limited Gaussian pulse has a minimum 

temporal-and spectral-width product. (transform limited, 

Fourier-transform limited, bandwidth limited)
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Transform-Limited Gaussian Pulse



 A more general Gaussian pulse : 

– A(t)=A0exp(-αt2)

– α = (1-ja)/τ2 , “a” is the chirp parameter. 

– Up chirped : a > 0

– Down chirped : a < 0

– Unchirped (transform-limited) : a = 0

– phase: =at2/2  (quadratic function) 

– instantaneous frequency: i = 0+at /t2 (linear function of 

time)

– The pulse is linearly chirped with chirp parameter a. 

– Fourier transform  of A(t): A()=A exp(-π2τ22 /a)

– Spectral intensity : S( )=A2exp(-2π2τ2(0 )
2 /(1+a2))

– FWHM of Gaussian: ∆=0.375/τ (1+a2)1/2=0.44/τFWHM 

– τFWHM∆ = 0.44(1+a2)1/2
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Temporal and spectral properties of a chirped Gaussian pulse of peak 

amplitude A0,  peak intensity I0 = |A0| 
2 , central frequency 0, time 

constant , and chirp parameter a.



Temporal and spectral profiles of three Gaussian pulses of central frequency 

0=300 THz (corresponding to a wavelength of 1 pm and a 3.3-fs optical cycle) 

and width 7 FWHM = 5 fs (7 = 4.23 fs). 

(a) Transform-limited pulse; the spectral width  == 88 THz (  = 73 nm). 

(b) (b) Up-chirped pulse of chirp parameter a == 2; the spectral width is a factor 

of (1 + a2) = 51/2 greater than in (a), so that  == 197 THz. 

(c) (c) Same as in (b) but the pulse is down-chirped with chirp parameter a = -2.
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 22.2 A Chirp Filter

– Linear Filtering of an Optical Pulse

– The Ideal Filter

– The Chirp Filter 

– Approximation of Arbitrary Phase Filter by a Chirp 

Filter

– Chirp Filtering of a Transform-Limited Gaussian Pulse

– Chirp Filtering of a Chirped Gaussian Pulse



Linear Filtering of an Optical Pulse

 A linear time-invariant system is characterized by a transfer 

function H(ν)

– it is the factor by which the Fourier component of the 

input pulse at frequency  is multiplied to generate the 

output component at the same frequency

U1(t) : the complex wavefunction of the original pulse

U2(t) : the complex wavefunction of the filtered pulse

 The Fourier transforms V1() and V2() are related by :
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 In using (22.2-1) we only need to know H() at frequencies 

within spectral band of the pulse (a region of width Δν

surrounding the central frequency ν0 )



 When Δν << ν0 (it is convenient to work with the complex 

envelope instead of the wavefunction):

 Using the relation:

 The shift property of the Fourier transform:

A(): the Fourier transform of A(t)

 It follows from (22.2-1) that
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 Define:   f=-0

 The envelope transfer function: 

 H(v) (transfer function ) :

 He(f) (transfer function) : 

 Phase transfer
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 The filter often plays a more important role than the 

magnitude in the reshaping of pulses

 Throughout this chapter we will deal phase filters 

– The magnitude |H(v)| is approximately constant within 

the frequency range of interest

 In time domain,  (22.2-2) becomes the convolution relation

he(t) : Inverse Fourier transform of He(f)





The Ideal Filter 

An ideal filter

It preserves the shape of the pulse envelope, it merely 

multiplies it by a constant(<1:attanuatior; >1:gain), and 

delays it by a fixed time.

 The transfer function has the form

H0 : a constant,  

τd : time delay  

G=|H0|
2 :the intensity reduction or gain  factor
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 The phase is a linear function of frequency Ψe(f)=Ψ0+2πτdf

Ψ0 =arg{H0}

the phase 2fdf is equivalent to a time delay d. 

 The input and output envelope are related by 

A2(t)=H0A1(t-τd)

 The intensities are related by

I2(t)=GI1(t-τd)



 For a distributed attenuator/amplifier of attenuation/gain 

coefficient α (d = d/c, H0=exp(-ad/2))

 A slab of ideal nondispersive material with 

– attenuation coefficient a

– refractive  index n (c = c0/n) 
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 The transfer function (b=2/c, propagation constant)

 When α and n are frequency dependent , the medium is 

divspresive, i.e., the filter is not ideal and the pulse shape 

may be altered 
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The Chirp Filter

 The Gaussian chirp filter is the most important filter in 
ultrafast optics, we often simply called the chirp filter

 The envelope transfer function is Gaussian:

b (real parameter, unit of s2): chirp coefficient of the filter

• b>0 : the filter is up-chirping

• b<0 : the filter is down-chirping



 The corresponding impulse-response function is the 
inverse FT of (22.2-6)  (Gaussian function):

 It too has a phase that is a quadratic function of time, i.e., 
it is a linearly chirped function, 

– up-chirped for positive b 

– down-chirped for negative b. 



 A cascade of two chirp filters with coefficients b1 and b2 is 

equivalent of single pulse with coefficient b:

A down-chirping filter may compensate the effect of an 

up-chirping filter

 By substituting (22.2-7) into (22.2-4) , the pulse envelope at the 

output and input of chirp filter are related by:
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 We now consider the effect of a chirp filter with  transfer 

function      (b: chirp coefficient) 

An unchirped Gaussian pulse (transform limited)

Fourier transform of A1(t)

The filtered pulse has a complex envelope with FT

Chirp Filtering of a Transform-Limited 

Gaussian Pulse
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The chirp filter



 This expression may be cast as the Fourier transform of a 

chirped Gaussian pulse( width t2, chirp parameter a2) (in 

accordance with (22.1-18))

 Equating the phase, we obtain:

 Equating the real and imaginary parts of (22.2-14) leads to the 

expressions that relate the parameters of the output pulse to those 

of the input pulse
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Equating the real and imaginary parts of (22.2-14) leads to the 

expressions that relate the parameters of the output pulse to those 

of the input pulse: 



Chirp Filtering of a Transform-Limited Gaussian 

Pulse

 We conclude that upon transmission through a chirp filter

 The pulse width is increased by a factor

– For |b|=τ1
2 this factor is √2

• Thus, the filter begins to have a significant effect 

when its chip coefficient is of the order of the 

squared width of the original pulse. 
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– For |b|>>τ1
2 => τ2≒|b|/τ1 , 

• indicating that the width of filtered pulse is directly 

proportional to |b| and inversely proportional to τ1 , 

• narrower pulses undergo greater broadening

 The initially transform-limited pulses becomes chirped with 

a chirp parameter a2 (a2=b/2)

– a2 is directly proportional to the filter chirp coefficient 

b and inversely proportional to the square of τ1 (the 

original pulse width )

– If b is positive =>  the filtered pulse is up-chirped

– If b is negative => the filtered pulse is down-chirped

– For b = 1
2, the chirp parameter  a2 = 1. 



 The spectral width of the pulse remains unchanged

– the chirp filter is a phase filter that does not alter the spectral 
intensity of the original pulse. 

– The temporal width of pulse is expanded by a factor                   
=>  the spectral width must be compressed by the same factor

– However, because the filtered pulse is chirped this is 
accompanied by a spectral broadening by the vary same 
factor, resulting in an unchanged spectral width
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Chirp Filtering of a Chirped Gaussian Pulse

 When a chirped Gaussian pulse is transmitted through a chirp 

filter, the pulse will be expanded or compressed and its chirp 

parameter will be altered 

– and may under certain conditions diminish to zero so that the new 

pulse may become unchirped (transform limited). 

 This compression property offers a technique for generation of 

picosecond and femtosecond optical pulses

 If the original pulse (width: 1, chirp parameter: a1)

complex envelope: A1(t)=A10exp[-(1-ja1)t
2/τ1

2] ,

chirp filter: He(f)=exp(-jbπ2f2)

chirped Gaussian pulse: A2(t)=A20exp[-(1-ja2)t
2/τ2

2]

where



 Equating the real and imaginary of (22.2-18) ,we obtain

 To determine the value bmin of the filter’s chirp parameter 

at which the filtered pulse has its minimum width τ0

 We equate the derivative of τ2 in (22.2-19) with respect to 

b to zero, the result is :



 Using (22.2-21) and (22.2-22) we rewrite (22.2-19) and (22.2-20) 

in terms of bmin and τ0 as follows:

 when b=bmin ,(22.2-23) and (22.2-24) give τ2=τ0 and a2=0 so 

that the pulse is both maximally compressed and unchirped

 If the original pulse is up-chirped (a1>0) ,then bmin<0 so that 

down-chirping filter is necessary for maximal compression 
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 Note that (22.2-23) and (22.2-24) are identical to (22.2-15) and 

(22.2-16), which were derived for the initially nchirped pulse, 

except that b is replaced by b-bmin .

 Thus, the graphs in Fig. 22.2-4 are also applicable to the case of 

initially chirped pulse except for a shift in the horizontal 

direction by the value bmin determined from (22.2-22). 
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Application :Chirp Pulse Amplifer

 The amplification of an ultrashort high-peak-power optical is often limited  

by nonlinear effects (such as saturation and self-focusing )

 Such limitations may be alleviated if the pulse is stretched by use of a chirp 

filterfilter prior to amplification, and compressed by filtering through a 

second chirp filter after it has been amplified, as illustrated in Fig. 22.2-6. 

 The first filter lowers the peak power by stretching the pulse

 The second chirp filter, which has a chirp parameter of equal magnitude 

and opposite sign => compresses the pulse back to its original width












