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22.1 Pulse Characteristics

|
A. Temporal and Spectral Characteristics

> A pulse of light is described by an optical field of finite time
duration.

»We represent the field components with a generic normalized
complex wavefunction U(r,t) such that the optical intensity

1(r,t) = | U(r,t) | (W/m?)

» When we are concerned with only the temporal or spectral
properties of a pulse at a fixed position r

« We will simply use the functions U(t) and I(t) .



Temporal and Spectral Representations

» The complex wavefunction describing an optical pulse of
central frequency v, Is written in

U (t) = A(t)e!™'

where

A(t) : complex envelope
» The complex envelope is characterized by its magnitude |A(t)|
and phase ¢(t) = arg{A(t)},

» Thus, complex wavefunction

> | The optical intensity:

The energy density:

\_

4 U (t) = A(t) | et

(1) =[U @) = AQ [ (Wim?)

[ 1yt (3Im?)

~

J
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Temporal and Spectral Representations omm
» The intensity profiles of typical pulses include :

Gaussian function : 20 \
I(t) oce -

Lorentzian function : 1

hyperbolic secant function 2
\yp I(t) oc sech®(t/7) Y,

» In the spectral domain, the pulse is described by the Fourier
transform

V(v) = j U (t)e 1#dt
—, Complex function: V)=V ()le”™
where w(v) . spectral phase
Spectral intensity:  §(y) =V (v) |?

—«vﬁl"lbiilu‘w
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Temporal and Spectral Representations U
» The Fourier transform of the complex envelope A(v) Is centered at
v=0

A(v) = j A()e 7 dt =V (v —v,)

» |If the pulse has a narrow spectral width, then the complex envelope
Is a slowly varying function of time, but this is not the case for
ultranarrow pulses with ultrawide spectral distributions.

: z Intensity 1(7) Spectral
Wavefunction Envelope y Phase ¢(7) SPCULE Spectral
Re{U(1)} \/ﬂ'ﬁ ﬂ ” ” 3 AG)| \— intensity S(v) phase (1)
/ o
A M%_,, : N
V) U \j t ] R 7 v

wUJU

Figure 22.1-1 Temporal and spectral representations of an optical pulse. (a) The real part of the
wavefunction Re{U (t)} = |A(t)| cos|wot + ()], the magnitude of the envelope |A(t)|, the intensity
I(t), and the phase ¢(t). (b) Spectral intensity S(v) and spectral phase 1 (v).

(b) Spectral representation

(a) Temporal representation

i
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Temporal and Spectral Widths

» We will use the full-width half-max (FWHM) definition and
denote the temporal and spectral widths as 7, and Av .

Optical intensity: ~ 1©=U® "=l AM) [
The spectral Intensity:  S(v) gV (v) 2
» The spectral width is inversely proportional to the temporal

width because of the Fourier transform relation between U(t)
and V(v).

» For a Gaussian pulse 0.44
Av =

TEWHM

ii. |
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22.1 Pulse Characteristics

> The specfra| mfensﬁy SM IS often plotted as a function of the

wavelength, S,(4) .

S, (1) =S| j—; -56)

¢

* For ultranarrow pulses,
(Av<<yy,)

dizdidv

@ dv
AlzgiAv
dv

2
AN~ %Ay,

jSl(l)dlsz(v)dv

 For ultranarrow pulses, large

Av
2
A= c ¢ Ay Av
Av Av C Av .,
Vo—— Vo+— 1-(—)
2 2 2v,
(22.1-1)

Spectral Width



|
« A 2-fs pulse,

e spectral width Av =220THz,
« AAL=847 nmat ;= lum,

* |.e., the spectrum is quite broad and extends from visible through

infrared.
Av AV [m—
—
100 THz % 100 THz 4&/{//
N, L~
10 THz | %f?@ec < 10 THz /g\}@
(N Ood\l}b % /// N
| THz N 1 THz ,,\/ o
N S 2
100 GHz < 100 GHz )’
\[’C& P //
10 GHz 10 GHz P
1 GHz 4{% 1 GHz £
Os,
100 MHz %,&% 100 MHz
§
omiz L L 1L 1 | | | 10 MHz
& & £ & B B ETowm g E E E § &
(@) = = B (b) s - = 8 -

Figure 22.1-2 (a) The relation Av = 0.44/7pwim between the spectral width Av and the
temporal width Trw for a Gaussian pulse. (b) The corresponding width A\ for a pulse of central
frequency v corresponding to the central wavelengths A\g = ¢/vg = 0.5 um, 1 gum, and 1.5 um. As
an example, a 10-fs pulse has a spectral width Av = 44 THz, corresponding to A\ = 37 nm, 147 nm,
and 331 nm, if the central wavelength is Ao = 0.5 ym, 1 um, and 1.5 pm, respectively, as indicated

ﬁflr'lbiiluh B by the open circles in the graph. This relation is linear if Av < v, [see (22.1-1)].

Photonic T'echnology Lab.



Instantaneous Frequency 3

|
» The instantaneous angular frequency w; Is the derivative of

the phase of U(t), and the instantaneous frequency v; = w; / 2z

dy 1 dy
wi:w0+d—t, I/i"—‘l/()-i-%%. (22.1-4)

Instantaneous Frequency

> If the phase is a linear function of time, ¢(t) =2zft , then the
Instantaneous frequency v;=v, +f

Re{U()} v
7§

» A linearly varying phase corresponds to a fixed frequency
shift.

» Nonlinear time dependence of the phase corresponds to time-
dependent instantaneous frequency.



Chirped Pulses

» A pulse is said to be chirped, or frequency modulated(FM), if its
Instantaneous frequency is time varying.

» If vi is increasing function of time at the pulse center (t=0), the pulse is
said to be up-chirped, i.e., 9” = d%p/dt?>0

» If v; is decreasing function of time at the pulse center, the pulse is said to
be down-chirped. i.e.. 0” =d%n/dt?<0

Re{U(H} I\W" Re{U(1} NM
ﬂnﬂ“nﬁﬂ > v.v.\vnﬂnnnM\ f\[\ﬂ[\r\v >
e e
t t |
‘égztoo— ‘§§400P
é‘g,aoo- §ano-
S 8200 §§200-
Eg | L
20 ; 0, (f9) 20 0 0 )

(@ (®)

Figure 22.1-3 Linearly up-chirped and down-chirped optical pulses. (a) An up-chirped pulse has
an increasing instantaneous frequency. () A down-chirped pulse has a decreasing instantaneous
frequency. In this figure, the pulse width is 20 fs and the central frequency v, = 300 THz. The
letters R and B, which represented red and blue, are generic indicators of long and short wavelengths,
respectively.
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» If the phase of an optical pulse of width 7 is a quadratic c»n\"s
function of time

at’
ot) =—-
.

a : constant

—>  ¢"(t)=

2

dp
wz—w0+aa

1 4
l/i‘:V()-i—%d—f.
|

a
2

vV, =V, + (—2)t

!

a
TT

- \ A2

(22.1-4)
Instantaneous Frequency

» The Instantaneous frequency is a linear function of time.

» The pulse Is said to be linearly chirped.

(22.1-5)
Chirp Parameter

« a >0 ,the pulse is up-chirped.
* a <0 ,the pulse is down-chirped.

— «vwli l'iil'lllw.r
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the instantaneous frequency increases by a / 27&;?’"(
IS of the order of magnitude of aAv

which

d
Vi=Vot+t ()t — vrzvi(£)=v0+(i)zvo+aAv
T > 2 27T
ov=v_—v,=aAv
2

» Thus, the chirp parameter is indicative of the ratio between
the instantaneous frequency change v at the pulse half-
width point and the spectral width Av.

~5v

a~ —
AV

|
— «vwli l' il'lllw.r
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Chirped Pulses o

> If the dependence of the phase ¢ on time Is an arbitrary
nonlinear function.

» Then it can be approximated by a Taylor-series expansion in
the vicinity of the pulse center.

» The chirp coefficient a represents the lowest-order chirping
effect resulting from the quadratic term of the expansion.

—“W’-wli lliil'lnu“r
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Time-Varying Spectrum

> It is often useful to trace the spectral changes of a time-
varying pulse throughout its time course.

 Such changes are obscured in the Fourier transform, which
only provides an average spectral representation of the entire
signal without noting which frequencies occur at which time.

 This is particularly evident if the signal is composed of a
sequence segments each with a different spectral composition.

» A commonly used measure Is based on a sliding windows (or
gate) that selects only one short time segment at a time, and
obtains Fourier transform of the pulse within the window
duration.

Photonic Technologyv L.ab.
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Time-Varying Spectrum oy

\

> It W(1) 1s a windows function of short duration T beginning
att=0.

» It U(t) Is the pulse wavefunction .

» The product U(t)W(t-7) is a segment of the pulse of duration T
beginning at time 7

» The Fourier transform of segment

O(v, 1) = /U(t)W(t — 7) exp(—j2nvt)dt. (22.1-6)
Short-Time
Fourier Transform
» Spectrogram

S(v,7r) = ‘CD(V,T)‘Z

—«vﬁl"lbiilu‘w
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Time-Varying Spectrum

Fig. 22.1-4, the result is plotted as a function of both frequency and time delay.

U(t)W(t-

v (THz)

S 1] I —

T2 ) B {.3‘;’}5;;3%

150

100

50

0 100 200

300

Photonic Technology Lab.

t (fs)

Figure 22.1-4 The  short-time
Fourier transform of U (t) is constructed
by a sequence of Fourier transforms of
U(t) multiplied by a moving window
W(t — 7). The spectrogram S(v,t) is
the squared magnitude of these Fourier
transforms. In this example, U(t) is
composed of two Gaussian pulses each
of time constant 7 = 60 fs and central
frequency 100 THz. The first pulse is
up-chirped (@ = 5) and the second is
down-chirped (a = -5) and has a smaller
amplitude. The window function W (t)

1s Gaussian with time constant 7 = 20
fs.



Autocorrelator

» https://www.youtube.com/watch?v=J1pNHYYySSY(

APE Autocorrelator PulseCheck Basic

T [Esc| magRe mmEs

» »l o) 1:09/4:36



https://www.youtube.com/watch?v=J1pNHYySSYg

Transform-Limited Gaussian Pulse %

» A transform-limited Gaussian pulse has constant phase and
Gaussian magnitude.

A(t) = A, exp(-t*/7°)

— Intensity : 1(t)=l,exp(-2t°/7%)
— Tepywam - 1.1871
— Fourier transform of A(t):

A(V)=A exp(-m?t?v?) (Gaussian function)
— Spectral intensity : S(v )=A%exp(-2n?tv?)
— Av=0.375/t=0.44/t 101 => AVTeyy = 0.44

» The transform-limited Gaussian pulse has a minimum
temporal-and spectral-width product. (transform limited,
Fourier-transform limited, bandwidth limited)



- . ; NN L
Transform-Limited Gaussian Pulse LN

%{T\":’s\

Az eXp(—ZTL'ZTZVZ) — % IO eXp(—ZtZ/TZ) — E

(—2m%T2v?) = ln1 = —0.7 (=2t%/12) = ]nl = —0.7

& 2
\/En'rv = 0.7 _
0.1882 V2t/T =07
V=7 t =0.591t
Ay 03764 Tewnm = 1.1827

T



» A more general Gaussian pulse :
— A(t)=Aexp(-at?)
— a = (1-ja)/r?, “a” is the chirp parameter.

A(t) = A exp(-t° / z°) exp( jat* / %)

/ Up chirped:a>0 \

— Down chirped :a<0
— Unchirped (transform-limited) :a=0
— phase: g=at?/7* (quadratic function)

— instantaneous frequency: v; = vy+at /nt?> (linear function of
time)

— The pulse is linearly chirped with chirp parameter a.

— Fourier transform of A(t): A(v)=A exp(-r2t3v?/a)

— Spectral intensity : S(v )=A%exp(-2rn°t*(v—v, )?* /(1+a?))

— FWHM of Gaussian: Av=0.375/t (1+a2)¥2=0.44/t-
’\"b' — TpwumAY = 0.44(1+a?)12
.l illl.ﬁ‘r
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Temporal and spectral properties of a chirped Gaussian pulse of peak

amplitude A,, peak intensity I, =|A,| 2, central frequency v,, time
constant z, and chirp parameter a.

A(t) = Agexp[—(1 — ja)t?/7?] Complex envelope

I(t) = Ipexp(—2t2/72%) Intensity
[I(t)dt = \/7/21yT Energy density
Tije = V2r 1/e half width
Trwnm = 1.187 FWHM width
o(t) = at?/7? Phase
AoT [ 7r27'2y2] ,
Alv) = exp |— - Fourier transform
) 2\/7(1 — ja) Pl T-7a
Iy [ 222 (v — 1/0)2] : :
S(V) = —————exp |— Spectral intensit
(v) i T 2 p y
Avyje = 2\/1 + a? 1/e half width
T
Av = e V1+a? = 0edc 1+ a? FWHM Spectral width

T TFWHM
b(v) = —2m272a/ (1 + a?))?

v; = 1o + (a/m7?)t

Spectral phase

Instantaneous frequency

—mﬂ'hb'u'm
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ettt
| \
Temporal and spectral profiles of three Gaussian pulses of central frequency o

1,=300 THz (corresponding to a wavelength of 1 pm and a 3.3-fs optical cycle)
and width 7 FWHM =5 fs (7 =4.23 fs).

(a) Transform-limited pulse; the spectral width Av ==88 THz ( AL =73 nm).

(b) (b) Up-chirped pulse of chirp parameter a == 2; the spectral width is a factor
of (1 + a?) = 52 greater than in (a), so that Av == 197 THz.

(c) (c) Same as in (b) but the pulse is down-chirped with chirp parameter a = -2.

3 15 1 075 0.6 \(um)
Re{U(n} ' S

(a) Transform-
limited pulse t

S)
(b) Up-chirped L N IR S S— / _
pulse t ) ] ) ‘?SV)
| | | L |
T I 1 F
~ S -
(c¢) Down-chirped i i . ““Iw) |

pulse t

L 1 |
10 £(fs) O 100 200 300 400 500 v(THz)

—uw-mhl biil'i‘w.r
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OUTLINE NN

» 22.2 A Chirp Filter
— Linear Filtering of an Optical Pulse
— The Ideal Filter
— The Chirp Filter

— Approximation of Arbitrary Phase Filter by a Chirp
Filter

— Chirp Filtering of a Transform-Limited Gaussian Pulse
— Chirp Filtering of a Chirped Gaussian Pulse

www.themegallery.com Company Logo



Linear Filtering of an Optical Pulse

» A linear time-invariant system is characterized by a transfer
function H(v)

— 1t is the factor by which the Fourier component of the
Input pulse at frequency v is multiplied to generate the
output component at the same frequency

U, (t) : the complex wavefunction of the original pulse
U,(t) : the complex wavefunction of the filtered pulse

» The Fourier transforms V,(v) and V,(v) are related by :

>

Va2(v) = Hw) Vi(v).

(22.2-1)

LI

Wy themegatieitoMosy T.ab.
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» Inusing (22.2-1) we only need to know H(v) at frequencies R
within spectral band of the pulse (a region of width Ay
surrounding the central frequency v, )

Y(v)
e
0 I’I Vo 7

Output complex
wavefunction Uy(?)

IN

Input complex

wavefunction U (t) Filter H(v)

Va(v) = H(v) Vi(v). (22.2-1)

i
—V\ﬁml‘bw-"r
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AaRPn
| R

o ¢

D . I

> When Ay <<, (itis convenient to work with the complex s
envelope instead of the wavefunction):

» Using the relation:
U (t) = A(t) exp( J22v,t)

» The shift property of the Fourier transform:
V(v)=A(V-V,)

A(v): the Fourier transform of A(t)
> It follows from (22.2-1) that

Az(V_Vo) =H (V)Al(V_VO)

Va(v) = H(v) Vi(v). (22.2-1)

ii. |

—W\wl‘ ll Vi
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» Define: f=1-y, Cogand

—> A(f)=H(v, + f)A(f)
= A(f)=H.(f)A(f)

» The envelope transfer function:

H.(f) = H(vp + f) (22.2-3)
Envelope Transfer Function

» H(v) (transfer function ) : H (v) = [H (v)| exp[~ j (V)]
» H.(f) (transfer function) : H, (f)=|H,(f)|exp[-jw,(f)]

> Phase transfer We(f)=w(vg+ f)

—«vﬁl"lbiilu‘w
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» The filter often plays a more important role than the 07»\'%
magnitude in the reshaping of pulses
» Throughout this chapter we will deal phase filters

— The magnitude |H(v)| is approximately constant within
the frequency range of interest

» In time domain, (22.2-2) becomes the convolution relation

[ As(t) = /_ 3 Bl =% ) Ag(E )dt s (22.2-4) J

h.(t) : Inverse Fourier transform of H(f)

P T g

L — Output complex !

Input complex = —
envelope A, (1) envelope A(7)

Envelope filter Ho(f) = H(1p + f)

A (f) = He(f)A(f), (22.2-2)

Photonic Technology Lab.
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I/
)

Input complex
wavefunction U (t)

Filter H(v)

Output complex
wavefunction U,(f)

AN

Input complex L

Ve(f)

;
e [HD

envelope A;(f) ..,u() )

f

/\

— Output complex 4
envelope A, (?)

Envelope filter Hp(f) = H(vp + f)

Figure 22.2-1 Filtering the wavefunction with a filter H(v) (upper figure) is equivalent to filtering
the envelope with a filter H.(f) = H(vo + f) (lower figure). The shaded area represents the spectral

band of interest.

_ih
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The Ideal Filter

An ideal filter

It preserves the shape of the pulse envelope, it merely
multiplies it by a constant(<1:.attanuatior; >1:gain), and
delays it by a fixed time.

» The transfer function has the form

H.(f) = Hoexp (—j2n f1q), (22.2-5)

H, : a constant,
7, : time delay
G=|H,|? :the intensity reduction or gain factor
H, (f)=|H,(f)|exp[-jw,(f)]



S \Q\"NN\
R L
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> The phase is a linear function of frequency ¥,(H=%,+2zrf “mod

Py =arg{Ho}
the phase 2rnfz,f is equivalent to a time delay 1.

> The Iinput and output envelope are related by
[Az(t):HoAl(t'Td) ]

Ve(f)
» The Intensities are related by IHo()| === = =- | A%
— / —
I,(1)=Gl,(t-7,) / 0 /
(a) Ideal filter
f )
As(f) = He(N)AL(S), (22.2-2)

L H.(f) = Hoexp (—j2n fT1q), (22.2-5) y

—«vﬁl"lbiilu‘w
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> For a distributed attenuator/amplifier of attenuation/gain
coefficient a (z,= d/c, Hy=exp(-a.d/2))

H, (f) =exp(-ad / 2)exp(-)2 fd/c)

G = exp(-ad) E e aai

(a) Ideal filter

» A slab of ideal nondispersive material with
— attenuation coefficient o
— refractive index n (c = cy/n)

H.(f) = Hyoexp (—j27 f1q) , (22.2-5)

i

Photonic Technology Lab.



» The transfer function (f=2rv/c, propagation constant)

H (v)=exp(-ad/2)exp(-)£d)

H. (f )=exp(-ad/2)exp(-j27 fd/c)

He(f) — H(V0+f)

» When a and n are frequency dependent , the medium is
divspresive, I.e., the filter i1s not ideal and the pulse shape

may be altered

ii. |

_«v.wli l' W
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(22.2-3)
Envelope Transfer Function
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The Chirp Filter

. |
» The Gaussian chirp filter is the most important filter in
ultrafast optics, we often simply called the chirp filter

» The envelope transfer function is Gaussian:

He(f) = exp (—jbn’ f?), (22.2-6)
Chirp-Filter
Transfer Function

b (real parameter, unit of s2): chirp coefficient of the filter
* b>0 : the filter is up-chirping
« pb<0 : the filter is down-chirping e el //

(b) Chirp filter



Nt

» The corresponding impulse-response function is the cﬁ\w
Inverse FT of (22.2-6) (Gaussian function):

|
he(t) = —— exp(jt?/b). (22.2-7)
Vb Chirp-Filter
Impulse-Response Function

» It too has a phase that is a quadratic function of time, I.e.,
It is a linearly chirped function,

— up-chirped for positive b
— down-chirped for negative b.

As(t) = / he(t —t') AL (t)dt’, (22.2-4)

—«vﬁl"lbiilu‘w
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» A cascade of two chirp filters with coefficients b, and b, is %.ﬁ
equivalent of single pulse with coefficient b: W

b=Db;+b
» A down-chirping filter may compensate the effect of an
up-chirping filter
» By substituting (22.2-7) into (22.2-4) , the pulse envelope at the
output and input of chirp filter are related by:

Ay(t) = : / h Aq(t)exp | j (f—t) dt’ (22.2-8)
VITh J_oo b ' '
Aq(t) = / e he(t —t') Ay (t))dt (22.2-4)
he(t) =8 (7% /b) (22.2-7)
e = - XPplJ7 . 2~
Vb Chirp-Filter
Impulse-Response Function

—«vﬁl"lbiilu‘w
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Chirp Filtering of a Transform-Limited i

Gaussian Pulse R
» We now consider the effect of a chirp filter with transfer
function  (b: chirp coefficient) The chirp filter

Ho(F)=e 7"

> An unchirped Gaussian pulse (transform limited)

A = Ae

> Fourier transform of A(t)

A(F)=(Aory [ 2m)e ™

> The filtered pulse has a complex envelope with FT

Ag(f) = Ap—= exp[—n2(72 + jb) F2]. (22.2-12)

2/




wn\"ab'i'u'.«» o

T1

5= expl-(

As(f) = Ao 2 + jb) £2). (22.2-12) OmaX

» This expression may be cast as the Fourier transform of a
chirped Gaussian pulse( width t,, chirp parameter a,) (in
accordance with (22.1-18))

2.-2,,2
Alv) = AoT exp [—W r }
2¢/m(1 — ja) 1 —ja
» Equating the phase, we obtain:
> i T2 (22.2-14)
T1+] '_1_ja2a LT

» Equating the real and imaginary parts of (22.2-14) leads to the
expressions that relate the parameters of the output pulse to those

of the input pulse
[ Ay = Apgy1-Ja,7, /7, ]

Photonic Technology Lab.



Equating the real and imaginary parts of (22.2-14) leads to the
expressions that relate the parameters of the output pulse to those

of the input pulse:

Width T2 = 7'1\/1+b2/7'{1,

Chirp parameter ay = b/72,

: Ao
Amplitude Ay = :
SV I
= . —
J\‘,: G = 3 (HJ Az)
\-7 G 1% 02

Photonic Tec

(22.2-15)
(22.2-16)

(22.2-17)

c,\s?vf p arawm ter

————— i



Chirp Filtering of a Transform-Limited Gaussian i

Pulse O

> We conclude that upon transmission through a chirp filter

T, =741+ a22 = 2'1\/1+ b? /2'14

» The pulse width is increased by a factor

J1+a,” = \/1+ b?/z,"

— For |b|=7,2 this factor is V2
 Thus, the filter begins to have a significant effect

when its chip coefficient is of the order of the
squared width of the original pulse.




i

— For |b|>>72 => 7,=|b|/7,

* Indicating that the width of filtered pulse is directly
proportional to |b| and inversely proportional to t,,

* narrower pulses undergo greater broadening

> The initially transform-limited pulses becomes chirped with
a chirp parameter a, (a,=b/t?)

— &, Is directly proportional to the filter chirp coefficient
b and inversely proportional to the square of ¢, (the
original pulse width)

— If b is positive => the filtered pulse Is up-chirped
— If b is negative => the filtered pulse is down-chirped

— For b = 7,2, the chirp parameter a, = 1.

Photonic Technology Lab.



» The spectral width of the pulse remains unchanged

— the chirp filter is a phase filter that does not alter the spectral |
Intensity of the original pulse.

0w

— The temporal width of pulse is expanded by a factor vi+a;’
=> the spectral width must be compressed by the same factor

— However, because the filtered pulse is chirped this is
accompanied by a spectral broadening by the vary same
factor, resulting in an unchanged spectral width

T2/ Ty

T

t t

_M_

Chirp filter b

Figure 22.2-4 A chirp filter with coefficient b converts an unchirped Gaussian pulse of width 7,
marked by an open circle, into a chirped Gaussian pulse of width 72 and chirp parameter ay. The

J'u’lh l'iil" pulse width increases as |b| increases, and is greater for smaller 7; . The chirp parameter is directly
S——l

\w—proportional to b and is greater for smaller 7.
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Chirp Filtering of a Chirped Gaussian Pulse

» When a chirped Gaussian pulse is transmitted through a chirp
filter, the pulse will be expanded or compressed and its chirp
parameter will be altered

— and may under certain conditions diminish to zero so that the new
pulse may become unchirped (transform limited).

» This compression property offers a technique for generation of
picosecond and femtosecond optical pulses

> If the original pulse (width: z;, chirp parameter: a,)
complex envelope: A,(t)=Aoexp[-(1-ja)t*/z?]
chirp filter: H(f)=exp(-jbm?f?)
chirped Gaussian pulse: A,(t)=A,.exp[-(1-ja,)t?/z,7]

where 5 9

2 LN Y (22.2-18)

1—jaz 1-—ja;
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» Equating the real and imaginary of (22.2-18) ,we obtain ON,B

b b?
72271\/1+2a1—2+(1+a%)—4, (22.2-19)

b
az=a1+ (1+aj)—.
i

(22.2-20)

> To determine the value b, of the filter’s chirp parameter
at which the filtered pulse has its minimum width ¢,

> We equate the derivative of z, in (22.2-19) with respect to
b to zero, the result is :

1

Minimum width 7H = m ; (22.2-21)
1
Chirp coefficient  buin = —a173 = —= ;‘_‘ -2, (22.2-22)
aj

i
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» Using (22.2-21) and (22.2-22) we rewrite (22.2-19) and (22. 2-20)
in terms of b_._and z, as follows: R\

Width 75 = mo4/14 (b 82,,,)/7d, (22.2-23)
Chirp parameter as = (b — by ) /'ro. (22.2-24)
» when b=Db_;. ,(22.2-23) and (22.2-24) give 7,=t, and a,=0 so

that the pulse is both maximally compressed and unchirped

> If the original pulse is up-chirped (a,>0) ,then b,;,<0 so that
down-chirping filter is necessary for maximal compression

Minimum width 75 = ——+ | (22.2-21)
v1+af
. . ai
Chirp coefficient by, = —ang = _Ta%ﬁz' (22.2-22)
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» Note that (22.2-23) and (22.2-24) are identical to (22.2-15) andﬁ‘*"@w%}
(22.2-16), which were derived for the initially nchirped pulse,
except that b is replaced by b-b; .

Width 75 = 701/1+ (b— b2,.)/7d, (22.2-23)

Chirp parameter as = (b — byin)/75. (22.2-24)
: 22.2-15
Width 75 = 714/1 + 0% /7, ( )

Chirp parameter ag = b /7127 (22.2-16)

» Thus, the graphs in Fig. 22.2-4 are also applicable to the case of
Initially chirped pulse except for a shift in the horizontal
direction by the value b.;. determined from (22.2-22).

T/ Ty + a,
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Application :Chirp Pulse Amplifer
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> The amplification of an ultrashort high-peak-power optical is often limited
by nonlinear effects (such as saturation and self-focusing )

> Such limitations may be alleviated if the pulse is stretched by use of a chirp

filterfilter prior to amplification, and compressed by filtering through a

second chirp filter after it has been amplified, as illustrated in Fig. 22.2-6.

> The first filter lowers the peak power by stretching the pulse

= The second chirp filter, which has a chirp parameter of equal magnitude
and opposite sign => compresses the pulse back to its original width

e —

-

‘N\[\NWW Chirp filter b > 0 Amplifier

Figure 22.2-6 Chirp pulse amplifier.
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Chirp filter b < 0
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