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22.1 Pulse Characteristics

A. Temporal and Spectral Characteristics

A pulse of light is described by an optical field of finite time 

duration.

We represent the field components with a generic normalized

complex wavefunction U(r,t) such that the optical intensity 

I(r,t) = | U(r,t) |2 (W/m2)

When we are concerned with only the temporal or spectral 

properties of a  pulse at a fixed position r

• We will simply use the functions U(t) and I(t) .



The complex wavefunction describing an optical pulse of 

central frequency ν0 is written in  

 The complex envelope is characterized by its magnitude |A(t)|  

and  phase φ(t) = arg{A(t)}, 

 Thus, complex wavefunction 
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Temporal and Spectral Representations
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where

A(t) : complex envelope
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 The intensity profiles of typical pulses include :  

Gaussian function :

Lorentzian function :

hyperbolic secant function      

 In the spectral domain, the pulse is described by the Fourier 

transform 

Temporal and Spectral Representations
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where ψ(ν) : spectral phase
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Temporal and Spectral Representations

 The Fourier transform of the complex envelope A() is  centered at 

= 0

 If the pulse has a narrow spectral width, then the complex envelope 

is a slowly varying function of time, but this is not the case for 

ultranarrow pulses with ultrawide spectral distributions. 
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 We will use the full-width half-max (FWHM) definition and 

denote the temporal and spectral widths as τFWHM and Δν .

The spectral width is inversely proportional to the temporal 

width because of the Fourier transform relation between U(t) 

and V(ν).

 For a Gaussian pulse

Temporal and Spectral Widths
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 The spectral intensity S(ν) is often plotted as a function of the 

wavelength,   Sλ(λ) .

• For ultranarrow pulses, 

( Δν << ν0 )
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• For ultranarrow pulses, large 

Δν
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• A 2-fs pulse,

• spectral width Δν = 220THz,

• Δλ = 847  nm at  λ0 = 1μm,

• i.e., the spectrum is quite broad and extends from visible through  

infrared.



Instantaneous Frequency

 The instantaneous angular frequency ωi is the derivative of 

the phase of U(t), and the instantaneous frequency νi = ωi / 2π

 If the phase is a linear function of time, φ(t) =2πft , then the 

instantaneous frequency νi = ν0 + f

 A linearly varying phase corresponds to a fixed frequency 

shift.

 Nonlinear time dependence of the phase corresponds to time-

dependent  instantaneous frequency.



Chirped Pulses

 A pulse is said to be chirped, or frequency modulated(FM), if its 

instantaneous  frequency is time varying.

 If vi is increasing function of time at the pulse center (t=0), the pulse is 

said to be up-chirped,  i.e., φ〞= d2φ/dt2 > 0

 If vi is decreasing function of time at the pulse center, the pulse is said to 

be down-chirped, i.e., φ〞= d2φ/dt2 < 0
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 If the phase of an optical pulse of width τ is a quadratic 

function of time  

a : constant

 The instantaneous frequency is a linear function of time.

 The pulse is said to be linearly chirped.

• a > 0 ,the pulse is up-chirped.

• a < 0 ,the pulse is down-chirped.
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 At t = τ / 2 , the instantaneous frequency increases by a / 2πτ, 

which is of the order of magnitude of aΔν

 Thus, the chirp parameter is indicative of the ratio between 

the instantaneous frequency change d at the pulse half-

width point and the spectral width Δν.
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Chirped Pulses

 If the dependence of the phase φ on time is an arbitrary

nonlinear function.

 Then it can be approximated by a Taylor-series expansion in 

the vicinity of the pulse center.

 The chirp coefficient a represents the lowest-order chirping 

effect resulting from the quadratic term of the expansion.



Time-Varying Spectrum

 It is often useful to trace the spectral changes of a time-

varying pulse throughout its time course.

• Such changes are obscured in the Fourier transform, which 

only provides an  average spectral representation of the entire 

signal without noting which frequencies occur at which time.

• This is particularly evident if the signal is composed of a 

sequence segments each with a different spectral composition.

 A commonly used measure is based on a sliding windows (or 

gate) that selects only one short time segment at a time, and 

obtains Fourier transform of the pulse within the window 

duration.



It W(t) is a windows function of short duration T beginning 

at t =0 .

It U(t) is the pulse wavefunction .

The product U(t)W(t-τ) is a segment of the pulse of duration T

beginning at time 

The Fourier transform of segment

Spectrogram
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Time-Varying Spectrum

Fig. 22.1-4, the result is plotted as a function of both frequency and time delay.



Autocorrelator

 https://www.youtube.com/watch?v=J1pNHYySSYg

https://www.youtube.com/watch?v=J1pNHYySSYg


Transform-Limited Gaussian Pulse

 A transform-limited Gaussian pulse has constant phase and 

Gaussian magnitude.

– Intensity : I(t)=I0exp(-2t2/τ2)

– τFWHM : 1.18τ

– Fourier transform  of A(t): 

A()=A exp(-π2τ22)   (Gaussian function)

– Spectral intensity : S( )=A2exp(-2π2τ22)

– ∆=0.375/τ=0.44/τFWHM => ∆τFWHM = 0.44

 The transform-limited Gaussian pulse has a minimum 

temporal-and spectral-width product. (transform limited, 

Fourier-transform limited, bandwidth limited)
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Transform-Limited Gaussian Pulse



 A more general Gaussian pulse : 

– A(t)=A0exp(-αt2)

– α = (1-ja)/τ2 , “a” is the chirp parameter. 

– Up chirped : a > 0

– Down chirped : a < 0

– Unchirped (transform-limited) : a = 0

– phase: =at2/2  (quadratic function) 

– instantaneous frequency: i = 0+at /t2 (linear function of 

time)

– The pulse is linearly chirped with chirp parameter a. 

– Fourier transform  of A(t): A()=A exp(-π2τ22 /a)

– Spectral intensity : S( )=A2exp(-2π2τ2(0 )
2 /(1+a2))

– FWHM of Gaussian: ∆=0.375/τ (1+a2)1/2=0.44/τFWHM 

– τFWHM∆ = 0.44(1+a2)1/2
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Temporal and spectral properties of a chirped Gaussian pulse of peak 

amplitude A0,  peak intensity I0 = |A0| 
2 , central frequency 0, time 

constant , and chirp parameter a.



Temporal and spectral profiles of three Gaussian pulses of central frequency 

0=300 THz (corresponding to a wavelength of 1 pm and a 3.3-fs optical cycle) 

and width 7 FWHM = 5 fs (7 = 4.23 fs). 

(a) Transform-limited pulse; the spectral width  == 88 THz (  = 73 nm). 

(b) (b) Up-chirped pulse of chirp parameter a == 2; the spectral width is a factor 

of (1 + a2) = 51/2 greater than in (a), so that  == 197 THz. 

(c) (c) Same as in (b) but the pulse is down-chirped with chirp parameter a = -2.
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 22.2 A Chirp Filter

– Linear Filtering of an Optical Pulse

– The Ideal Filter

– The Chirp Filter 

– Approximation of Arbitrary Phase Filter by a Chirp 

Filter

– Chirp Filtering of a Transform-Limited Gaussian Pulse

– Chirp Filtering of a Chirped Gaussian Pulse



Linear Filtering of an Optical Pulse

 A linear time-invariant system is characterized by a transfer 

function H(ν)

– it is the factor by which the Fourier component of the 

input pulse at frequency  is multiplied to generate the 

output component at the same frequency

U1(t) : the complex wavefunction of the original pulse

U2(t) : the complex wavefunction of the filtered pulse

 The Fourier transforms V1() and V2() are related by :
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 In using (22.2-1) we only need to know H() at frequencies 

within spectral band of the pulse (a region of width Δν

surrounding the central frequency ν0 )



 When Δν << ν0 (it is convenient to work with the complex 

envelope instead of the wavefunction):

 Using the relation:

 The shift property of the Fourier transform:

A(): the Fourier transform of A(t)

 It follows from (22.2-1) that
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 Define:   f=-0

 The envelope transfer function: 

 H(v) (transfer function ) :

 He(f) (transfer function) : 

 Phase transfer
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 The filter often plays a more important role than the 

magnitude in the reshaping of pulses

 Throughout this chapter we will deal phase filters 

– The magnitude |H(v)| is approximately constant within 

the frequency range of interest

 In time domain,  (22.2-2) becomes the convolution relation

he(t) : Inverse Fourier transform of He(f)





The Ideal Filter 

An ideal filter

It preserves the shape of the pulse envelope, it merely 

multiplies it by a constant(<1:attanuatior; >1:gain), and 

delays it by a fixed time.

 The transfer function has the form

H0 : a constant,  

τd : time delay  

G=|H0|
2 :the intensity reduction or gain  factor
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 The phase is a linear function of frequency Ψe(f)=Ψ0+2πτdf

Ψ0 =arg{H0}

the phase 2fdf is equivalent to a time delay d. 

 The input and output envelope are related by 

A2(t)=H0A1(t-τd)

 The intensities are related by

I2(t)=GI1(t-τd)



 For a distributed attenuator/amplifier of attenuation/gain 

coefficient α (d = d/c, H0=exp(-ad/2))

 A slab of ideal nondispersive material with 

– attenuation coefficient a

– refractive  index n (c = c0/n) 

e ( ) exp(- / 2)exp(-j2 /c)H f d fda 
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 The transfer function (b=2/c, propagation constant)

 When α and n are frequency dependent , the medium is 

divspresive, i.e., the filter is not ideal and the pulse shape 

may be altered 
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The Chirp Filter

 The Gaussian chirp filter is the most important filter in 
ultrafast optics, we often simply called the chirp filter

 The envelope transfer function is Gaussian:

b (real parameter, unit of s2): chirp coefficient of the filter

• b>0 : the filter is up-chirping

• b<0 : the filter is down-chirping



 The corresponding impulse-response function is the 
inverse FT of (22.2-6)  (Gaussian function):

 It too has a phase that is a quadratic function of time, i.e., 
it is a linearly chirped function, 

– up-chirped for positive b 

– down-chirped for negative b. 



 A cascade of two chirp filters with coefficients b1 and b2 is 

equivalent of single pulse with coefficient b:

A down-chirping filter may compensate the effect of an 

up-chirping filter

 By substituting (22.2-7) into (22.2-4) , the pulse envelope at the 

output and input of chirp filter are related by:

1 2b b b 



 We now consider the effect of a chirp filter with  transfer 

function      (b: chirp coefficient) 

An unchirped Gaussian pulse (transform limited)

Fourier transform of A1(t)

The filtered pulse has a complex envelope with FT

Chirp Filtering of a Transform-Limited 

Gaussian Pulse
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The chirp filter



 This expression may be cast as the Fourier transform of a 

chirped Gaussian pulse( width t2, chirp parameter a2) (in 

accordance with (22.1-18))

 Equating the phase, we obtain:

 Equating the real and imaginary parts of (22.2-14) leads to the 

expressions that relate the parameters of the output pulse to those 

of the input pulse
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Equating the real and imaginary parts of (22.2-14) leads to the 

expressions that relate the parameters of the output pulse to those 

of the input pulse: 



Chirp Filtering of a Transform-Limited Gaussian 

Pulse

 We conclude that upon transmission through a chirp filter

 The pulse width is increased by a factor

– For |b|=τ1
2 this factor is √2

• Thus, the filter begins to have a significant effect 

when its chip coefficient is of the order of the 

squared width of the original pulse. 
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– For |b|>>τ1
2 => τ2≒|b|/τ1 , 

• indicating that the width of filtered pulse is directly 

proportional to |b| and inversely proportional to τ1 , 

• narrower pulses undergo greater broadening

 The initially transform-limited pulses becomes chirped with 

a chirp parameter a2 (a2=b/2)

– a2 is directly proportional to the filter chirp coefficient 

b and inversely proportional to the square of τ1 (the 

original pulse width )

– If b is positive =>  the filtered pulse is up-chirped

– If b is negative => the filtered pulse is down-chirped

– For b = 1
2, the chirp parameter  a2 = 1. 



 The spectral width of the pulse remains unchanged

– the chirp filter is a phase filter that does not alter the spectral 
intensity of the original pulse. 

– The temporal width of pulse is expanded by a factor                   
=>  the spectral width must be compressed by the same factor

– However, because the filtered pulse is chirped this is 
accompanied by a spectral broadening by the vary same 
factor, resulting in an unchanged spectral width
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Chirp Filtering of a Chirped Gaussian Pulse

 When a chirped Gaussian pulse is transmitted through a chirp 

filter, the pulse will be expanded or compressed and its chirp 

parameter will be altered 

– and may under certain conditions diminish to zero so that the new 

pulse may become unchirped (transform limited). 

 This compression property offers a technique for generation of 

picosecond and femtosecond optical pulses

 If the original pulse (width: 1, chirp parameter: a1)

complex envelope: A1(t)=A10exp[-(1-ja1)t
2/τ1

2] ,

chirp filter: He(f)=exp(-jbπ2f2)

chirped Gaussian pulse: A2(t)=A20exp[-(1-ja2)t
2/τ2

2]

where



 Equating the real and imaginary of (22.2-18) ,we obtain

 To determine the value bmin of the filter’s chirp parameter 

at which the filtered pulse has its minimum width τ0

 We equate the derivative of τ2 in (22.2-19) with respect to 

b to zero, the result is :



 Using (22.2-21) and (22.2-22) we rewrite (22.2-19) and (22.2-20) 

in terms of bmin and τ0 as follows:

 when b=bmin ,(22.2-23) and (22.2-24) give τ2=τ0 and a2=0 so 

that the pulse is both maximally compressed and unchirped

 If the original pulse is up-chirped (a1>0) ,then bmin<0 so that 

down-chirping filter is necessary for maximal compression 
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 Note that (22.2-23) and (22.2-24) are identical to (22.2-15) and 

(22.2-16), which were derived for the initially nchirped pulse, 

except that b is replaced by b-bmin .

 Thus, the graphs in Fig. 22.2-4 are also applicable to the case of 

initially chirped pulse except for a shift in the horizontal 

direction by the value bmin determined from (22.2-22). 
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Application :Chirp Pulse Amplifer

 The amplification of an ultrashort high-peak-power optical is often limited  

by nonlinear effects (such as saturation and self-focusing )

 Such limitations may be alleviated if the pulse is stretched by use of a chirp 

filterfilter prior to amplification, and compressed by filtering through a 

second chirp filter after it has been amplified, as illustrated in Fig. 22.2-6. 

 The first filter lowers the peak power by stretching the pulse

 The second chirp filter, which has a chirp parameter of equal magnitude 

and opposite sign => compresses the pulse back to its original width












